Skip to main content

Advertisement

Log in

Complement and HIV-I infection/HIV-associated neurocognitive disorders

  • Review
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The various neurological complications associated with HIV-1 infection, specifically HIV-associated neurocognitive disorders (HAND) persist as a major public health burden worldwide. Despite the widespread use of anti-retroviral therapy, the prevalence of HAND is significantly high. HAND results from the direct effects of an HIV-1 infection as well as secondary effects of HIV-1-induced immune reaction and inflammatory response. Complement, a critical mediator of innate and acquired immunity, plays important roles in defeating many viral infections by the formation of a lytic pore or indirectly by opsonization and recruitment of phagocytes. While the role of complement in the pathogenesis of HIV-1 infection and HAND has been previously recognized for over 15 years, it has been largely underestimated thus far. Complement can be activated through HIV-1 envelope proteins, mannose-binding lectins (MBL), and anti-HIV-1 antibodies. Complement not only fights against HIV-1 infection but also enhances HIV-1 infection. In addition, HIV-1 can hijack complement regulators such as CD59 and CD55 and can utilize these regulators and factor H to escape from complement attack. Normally, complement levels in brain are much lower than plasma levels and there is no or little complement deposition in brain cells. Interestingly, local production and deposition of complement are dramatically increased in HIV-1-infected brain, indicating that complement may contribute to the pathogenesis of HAND. Here, we review the current understanding of the role of complement in HIV-1 infection and HAND, as well as potential therapeutic approaches targeting the complement system for the treatment and eradications of HIV-1 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aasa-Chapman MM, Hayman A, Newton P, Cornforth D, Williams I, Borrow P, Balfe P, McKnight A (2004) Development of the antibody response in acute HIV-1 infection. AIDS (London, England) 18:371–381

    CAS  Google Scholar 

  • Aasa-Chapman MM, Holuigue S, Aubin K, Wong M, Jones NA, Cornforth D, Pellegrino P, Newton P, Williams I, Borrow P et al (2005) Detection of antibody-dependent complement-mediated inactivation of both autologous and heterologous virus in primary human immunodeficiency virus type 1 infection. J Virol 79:2823–2830

    PubMed Central  PubMed  CAS  Google Scholar 

  • Abe K, Miyazaki M, Koji T, Furusu A, Ozono Y, Harada T, Sakai H, Nakane PK, Kohno S (1998) Expression of decay accelerating factor mRNA and complement C3 mRNA in human diseased kidney. Kidney Int 54:120–130

    PubMed  CAS  Google Scholar 

  • Acosta J, Qin X, Halperin J (2004) Complement and complement regulatory proteins as potential molecular targets for vascular diseases. Curr Pharm Des 10:203–211

    PubMed  CAS  Google Scholar 

  • Amet T, Ghabril M, Chalasani N, Byrd D, Hu N., Grantham A., Liu Z., Qin X., He JJ,Yu Q (2011). CD59 incorporation protects hepatitis C virus against complement-mediated destruction. Hepatology (Baltimore, Md.)

  • Bajtay Z, Speth C, Erdei A, Dierich MP (2004) Cutting edge: productive HIV-1 infection of dendritic cells via complement receptor type 3 (CR3, CD11b/CD18). J Immunol 173:4775–4778

    PubMed  CAS  Google Scholar 

  • Beck EJ, Santas XM, Delay PR (2008) Why and how to monitor the cost and evaluate the cost-effectiveness of HIV services in countries. AIDS (London, England) 22(Suppl 1):S75–S85

    Google Scholar 

  • Belec L, Dupre T, Prazuck T, Tevi-Benissan C, Kanga JM, Pathey O, Lu XS, Pillot J (1995) Cervicovaginal overproduction of specific IgG to human immunodeficiency virus (HIV) contrasts with normal or impaired IgA local response in HIV infection. J Infect Dis 172:691–697

    PubMed  CAS  Google Scholar 

  • Binley JM, Klasse PJ, Cao Y, Jones I, Markowitz M, Ho DD, Moore JP (1997) Differential regulation of the antibody responses to Gag and Env proteins of human immunodeficiency virus type 1. J Virol 71:2799–2809

    PubMed Central  PubMed  CAS  Google Scholar 

  • Borrow P, Shattock RJ, Vyakarnam A, Group, E.W (2010) Innate immunity against HIV: a priority target for HIV prevention research. Retrovirology 7:84

    PubMed Central  PubMed  Google Scholar 

  • Breitner S, Storkel S, Reichel W, Loos M (1995) Complement components C1q, C1r/C1s, and C1INH in rheumatoid arthritis. Correlation of in situ hybridization and northern blot results with function and protein concentration in synovium and primary cell cultures. Arthritis Rheum 38:492–498

    PubMed  CAS  Google Scholar 

  • Brodbeck WG, Mold C, Atkinson JP, Medof ME (2000) Cooperation between decay-accelerating factor and membrane cofactor protein in protecting cells from autologous complement attack. J Immunol 165:3999–4006

    PubMed  CAS  Google Scholar 

  • Bruder C, Hagleitner M, Darlington G, Mohsenipour I, Wurzner R, Hollmuller I, Stoiber H, Lass-Florl C, Dierich MP, Speth C (2004) HIV-1 induces complement factor C3 synthesis in astrocytes and neurons by modulation of promoter activity. Mol Immunol 40:949–961

    PubMed  CAS  Google Scholar 

  • Chatterjee A, Rathore A, Yamamoto N, Dhole TN (2011) Mannose-binding lectin (+54) exon-1 gene polymorphism influence human immunodeficiency virus-1 susceptibility in North Indians. Tissue Antigens 77:18–22

    PubMed  CAS  Google Scholar 

  • Chong YH, Lee MJ (2000) Expression of complement inhibitor protein CD59 in human neuronal and glial cell lines treated with HIV-1 gp41 peptides. J Neurovirol 6:51–60

    PubMed  CAS  Google Scholar 

  • Cohen MS, Hellmann N, Levy JA, DeCock K, Lange J (2008) The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J Clin Investig 118:1244–1254

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cooper NR, Jensen FC, Welsh RM Jr, Oldstone MB (1976) Lysis of RNA tumor viruses by human serum: direct antibody-independent triggering of the classical complement pathway. J Exp Med 144:970–984

    PubMed  CAS  Google Scholar 

  • Dalrymple A, Wild EJ, Joubert R, Sathasivam K, Bjorkqvist M, Petersen A, Jackson GS, Isaacs JD, Kristiansen M, Bates GP et al (2007) Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates. J Proteome Res 6:2833–2840

    PubMed  CAS  Google Scholar 

  • Datta PK, Rappaport J (2006) HIV and complement: hijacking an immune defense. Biomed Pharmacother 60:561–568

    PubMed  CAS  Google Scholar 

  • Davitz MA, Low MG, Nussenzweig V (1986) Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC). J Exp Med 163:1150–1161

    PubMed  CAS  Google Scholar 

  • De Rosa SD, McElrath MJ (2008) T cell responses generated by HIV vaccines in clinical trials. Curr Opin HIV AIDS 3:375–379

    PubMed  Google Scholar 

  • Dierich MP, Stoiber H, Clivio A (1996) A "complementary" AIDS vaccine. Nat Med 2:153–155

    PubMed  CAS  Google Scholar 

  • Dzwonek A, Novelli V, Bajaj-Elliott M, Turner M, Clapson M, Klein N (2006) Mannose-binding lectin in susceptibility and progression of HIV-1 infection in children. Antivir Ther 11:499–505

    PubMed  CAS  Google Scholar 

  • Ebenbichler CF, Thielens NM, Vornhagen R, Marschang P, Arlaud GJ, Dierich MP (1991) Human immunodeficiency virus type 1 activates the classical pathway of complement by direct C1 binding through specific sites in the transmembrane glycoprotein gp41. J Exp Med 174:1417–1424

    PubMed  CAS  Google Scholar 

  • Eikelenboom P, Hack CE, Rozemuller JM, Stam FC (1989) Complement activation in amyloid plaques in Alzheimer's dementia. Virchows Arch B Cell Pathol Mol Pathol 56:259–262

    CAS  Google Scholar 

  • Ezekowitz RA, Kuhlman M, Groopman JE, Byrn RA (1989) A human serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus. J Exp Med 169:185–196

    PubMed  CAS  Google Scholar 

  • Fisicaro N1, Aminian A, Hinchliffe SJ, Morgan BP, Pearse MJ, D’Apice AJ, Cowan PJ (2000) The pig analogue of CD59 protects transgenic mouse hearts from injury by human complement. Transplantation 70(6):963–968

  • Gasque P, Fontaine M, Morgan BP (1995) Complement expression in human brain. Biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. J Immunol 154:4726–4733

    PubMed  CAS  Google Scholar 

  • Gauduin MC, Parren PW, Weir R, Barbas CF, Burton DR, Koup RA (1997) Passive immunization with a human monoclonal antibody protects hu-PBL-SCID mice against challenge by primary isolates of HIV-1. Nat Med 3:1389–1393

    PubMed  CAS  Google Scholar 

  • Ge X, Wu L, Hu W, Fernandes S, Wang C, Li X, Brown JR, Qin X (2011) rILYd4, a human CD59 inhibitor, enhances complement-dependent cytotoxicity of ofatumumab against rituximab-resistant B-cell lymphoma cells and chronic lymphocytic leukemia. Clin Cancer Res 17:6702–6711

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gelman BB, Chen T, Lisinicchia JG, Soukup VM, Carmical JR, Starkey JM, Masliah E, Commins DL, Brandt D, Grant I et al (2012) The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment. PLoS One 7:e46178

    PubMed Central  PubMed  CAS  Google Scholar 

  • Giddings KS, Zhao J, Sims PJ, Tweten RK (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11:1173–1178

    PubMed  CAS  Google Scholar 

  • Girard MP, Osmanov SK, Kieny MP (2006) A review of vaccine research and development: the human immunodeficiency virus (HIV). Vaccine 24:4062–4081

    PubMed  CAS  Google Scholar 

  • Gregersen JP, Mehdi S, Baur A, Hilfenhaus J (1990) Antibody- and complement-mediated lysis of HIV-infected cells and inhibition of viral replication. J Med Virol 30:287–293

    PubMed  CAS  Google Scholar 

  • Griffin GE, Leung K, Folks TM, Kunkel S, Nabel GJ (1991) Induction of NF-kappa B during monocyte differentiation is associated with activation of HIV-gene expression. Res Virol 142:233–238

    PubMed  CAS  Google Scholar 

  • Guo RF, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23:821–852

    PubMed  CAS  Google Scholar 

  • Haas PJ, van Strijp J (2007) Anaphylatoxins: their role in bacterial infection and inflammation. Immunol Res 37:161–175

    PubMed  CAS  Google Scholar 

  • Hart ML, Saifuddin M, Spear GT (2003) Glycosylation inhibitors and neuraminidase enhance human immunodeficiency virus type 1 binding and neutralization by mannose-binding lectin. J Gen Virol 84:353–360

    PubMed  CAS  Google Scholar 

  • Haurum JS, Thiel S, Jones IM, Fischer PB, Laursen SB, Jensenius JC (1993) Complement activation upon binding of mannan-binding protein to HIV envelope glycoproteins. AIDS (London, England) 7:1307–1313

    CAS  Google Scholar 

  • Holt DS, Botto M, Bygrave AE, Hanna SM, Walport MJ, Morgan BP (2001) Targeted deletion of the CD59 gene causes spontaneous intravascular hemolysis and hemoglobinuria. Blood 98:442–449

    PubMed  CAS  Google Scholar 

  • Hu W, Ferris SP, Tweten RK, Wu G, Radaeva S, Gao B, Bronson RT, Halperin JA, Qin X (2008) Rapid conditional targeted ablation of cells expressing human CD59 in transgenic mice by intermedilysin. Nat Med 14:98–103

    PubMed  CAS  Google Scholar 

  • Hu W, Yu Q, Hu N, Byrd D, Amet T, Shikuma C, Shiramizu B, Halperin JA, Qin X (2010) A high-affinity inhibitor of human CD59 enhances complement-mediated virolysis of HIV-1: implications for treatment of HIV-1/AIDS. J Immunol 184:359–368

    PubMed  CAS  Google Scholar 

  • Hu W, Ge X, You T, Xu T, Zhang J, Wu G, Peng Z, Chorev M, Aktas BH, Halperin JA et al (2011) Human CD59 inhibitor sensitizes rituximab-resistant lymphoma cells to complement-mediated cytolysis. Cancer Res 71(6):2298–2307

    PubMed Central  PubMed  CAS  Google Scholar 

  • Huber M, Trkola A (2007) Humoral immunity to HIV-1: neutralization and beyond. J Intern Med 262:5–25

    PubMed  CAS  Google Scholar 

  • Huber M, Fischer M, Misselwitz B, Manrique A, Kuster H, Niederost B, Weber R, von Wyl V, Gunthard HF, Trkola A (2006) Complement lysis activity in autologous plasma is associated with lower viral loads during the acute phase of HIV-1 infection. PLoS Med 3:e441

    PubMed Central  PubMed  Google Scholar 

  • Humbert M, Dietrich U (2006) The role of neutralizing antibodies in HIV infection. AIDS Rev 8:51–59

    PubMed  Google Scholar 

  • Israels J, Scherpbier HJ, Frakking FN, van de Wetering MD, Kremer LC, Kuijpers TW (2012) Mannose-binding lectin and the risk of HIV transmission and disease progression in children: a systematic review. Pediatr Infect Dis J 31:1272–1278

    PubMed  Google Scholar 

  • Jongen PJ, Doesburg WH, Ibrahim-Stappers JL, Lemmens WA, Hommes OR, Lamers KJ (2000) Cerebrospinal fluid C3 and C4 indexes in immunological disorders of the central nervous system. Acta Neurol Scand 101:116–121

    PubMed  CAS  Google Scholar 

  • June RA, Schade SZ, Bankowski MJ, Kuhns M, McNamara A, Lint TF, Landay AL, Spear GT (1991) Complement and antibody mediate enhancement of HIV infection by increasing virus binding and provirus formation. AIDS (London, England) 5:269–274

    CAS  Google Scholar 

  • Kacani L, Banki Z, Zwirner J, Schennach H, Bajtay Z, Erdei A, Stoiber H, Dierich MP (2001) C5a and C5a(desArg) enhance the susceptibility of monocyte-derived macrophages to HIV infection. J Immunol 166:3410–3415

    PubMed  CAS  Google Scholar 

  • Kim MK, Breitbach CJ, Moon A, Heo J, Lee YK, Cho M, Lee JW, Kim SG, Kang DH, Bell JC et al (2013) Oncolytic and immunotherapeutic vaccinia induces antibody-mediated complement-dependent cancer cell lysis in humans. Sci Translat Med 5:185ra–163

    Google Scholar 

  • Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788

    PubMed  CAS  Google Scholar 

  • Letendre S (2011) Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Top Antiviral Med 19:137–142

    Google Scholar 

  • Letvin NL (2005) Progress toward an HIV vaccine. Annu Rev Med 56:213–223

    PubMed  CAS  Google Scholar 

  • Li H, Fu WP, Hong ZH (2013) Replication study in Chinese Han population and meta-analysis supports association between the MBL2 gene polymorphism and HIV-1 infection. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis 20:163–170

    CAS  Google Scholar 

  • Lin RC, Herman J, Henry L, Daniels GL (1988) A family showing inheritance of the Inab phenotype. Transfusion 28:427–429

    PubMed  CAS  Google Scholar 

  • Lu S (2008) Immunogenicity of DNA vaccines in humans: it takes two to tango. Hum Vaccin 4:449–452

    PubMed  CAS  Google Scholar 

  • Lund O, Hansen J, Soorensen AM, Mosekilde E, Nielsen JO, Hansen JE (1995) Increased adhesion as a mechanism of antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus infection. J Virol 69:2393–2400

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mangano A, Rocco C, Marino SM, Mecikovsky D, Genre F, Aulicino P, Bologna R, Sen L (2008) Detrimental effects of mannose-binding lectin (MBL2) promoter genotype XA/XA on HIV-1 vertical transmission and AIDS progression. J Infect Dis 198:694–700

    PubMed  CAS  Google Scholar 

  • Martinez-Pinna R, Madrigal-Matute J, Tarin C, Burillo E, Esteban-Salan M, Pastor-Vargas C, Lindholt JS, Lopez JA, Calvo E, de Ceniga MV et al (2013) Proteomic analysis of intraluminal thrombus highlights complement activation in human abdominal aortic aneurysms. Arteriosclerosis Thromb Vasc Biol 33:2013–2020

    CAS  Google Scholar 

  • Mayer MM (1984) Complement. Historical perspectives and some current issues. Complement (Basel Switzerland) 1:2–26

    CAS  Google Scholar 

  • Medof ME, Lublin DM, Holers VM, Ayers DJ, Getty RR, Leykam JF, Atkinson JP, Tykocinski ML (1987) Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci U S A 84:2007–2011

    PubMed Central  PubMed  CAS  Google Scholar 

  • Montefiori DC, Cornell RJ, Zhou JY, Zhou JT, Hirsch VM, Johnson PR (1994) Complement control proteins, CD46, CD55, and CD59, as common surface constituents of human and simian immunodeficiency viruses and possible targets for vaccine protection. Virology 205:82–92

    PubMed  CAS  Google Scholar 

  • Morgan BP (1999) Regulation of the complement membrane attack pathway. Crit Rev Immunol 19:173–198

    PubMed  CAS  Google Scholar 

  • Morgan BP, Gasque P (1997) Extrahepatic complement biosynthesis: where, when and why? Clin Exp Immunol 107:1–7

    PubMed Central  PubMed  CAS  Google Scholar 

  • Morris L (2002) Neutralizing antibody responses to HIV-1 infection. IUBMB Life 53:197–199

    PubMed  CAS  Google Scholar 

  • Mosser DM, Brittingham A (1997) Leishmania, macrophages and complement: a tale of subversion and exploitation. Parasitology 115(Suppl):S9–S23

    PubMed  Google Scholar 

  • Nevo Y, Ben-Zeev B, Tabib A, Straussberg R, Anikster Y, Shorer Z, Fattal-Valevski A, Ta-Shma A, Aharoni S, Rabie M et al (2013) CD59 deficiency is associated with chronic hemolysis and childhood relapsing immune-mediated polyneuropathy. Blood 121:129–135

    PubMed  CAS  Google Scholar 

  • Nicholson-Weller A, Spicer DB, Austen KF (1985) Deficiency of the complement regulatory protein, "decay-accelerating factor," on membranes of granulocytes, monocytes, and platelets in paroxysmal nocturnal hemoglobinuria. N Engl J Med 312:1091–1097

    PubMed  CAS  Google Scholar 

  • Ozkaya Sahin G, Holmgren B, Sheik-Khalil E, da Silva Z, Nielsen J, Nowroozalizadeh S, Mansson F, Norrgren H, Aaby P, Fenyo EM et al (2013) Effect of complement on HIV-2 plasma antiviral activity is intratype specific and potent. J Virol 87:273–281

    PubMed Central  PubMed  Google Scholar 

  • Pantophlet R, Burton DR (2006) GP120: target for neutralizing HIV-1 antibodies. Annu Rev Immunol 24:739–769

    PubMed  CAS  Google Scholar 

  • Pawluczkowycz AW, Beurskens FJ, Beum PV, Lindorfer MA, van de Winkel JG, Parren PW, Taylor RP (2009) Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J Immunol 183:749–758

    PubMed  CAS  Google Scholar 

  • Pellegrin I, Legrand E, Neau D, Bonot P, Masquelier B, Pellegrin JL, Ragnaud JM, Bernard N, Fleury HJ (1996) Kinetics of appearance of neutralizing antibodies in 12 patients with primary or recent HIV-1 infection and relationship with plasma and cellular viral loads. J Acquir Immune Defic Syndr Hum Retrovirol 11:438–447

    PubMed  CAS  Google Scholar 

  • Pincus SH, Messer KG, Nara PL, Blattner WA, Colclough G, Reitz M (1994) Temporal analysis of the antibody response to HIV envelope protein in HIV-infected laboratory workers. J Clin Investig 93:2505–2513

    PubMed Central  PubMed  CAS  Google Scholar 

  • Posner MR, Elboim HS, Cannon T, Cavacini L, Hideshima T (1992) Functional activity of an HIV-1 neutralizing IgG human monoclonal antibody: ADCC and complement-mediated lysis. AIDS Res Hum Retrovir 8:553–558

    PubMed  CAS  Google Scholar 

  • Pratt JR, Basheer SA, Sacks SH (2002) Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat Med 8:582–587

    PubMed  CAS  Google Scholar 

  • Prohaszka Z, Hidvegi T, Ujhelyi E, Stoiber H, Dierich MP, Susal C, Fust G (1995) Interaction of complement and specific antibodies with the external glycoprotein 120 of HIV-1. Immunology 85:184–189

    PubMed Central  PubMed  CAS  Google Scholar 

  • Prohaszka Z, Nemes J, Hidvegi T, Toth FD, Kerekes K, Erdei A, Szabo J, Ujhelyi E, Thielens N, Dierich MP et al (1997) Two parallel routes of the complement-mediated antibody-dependent enhancement of HIV-1 infection. AIDS (London, England) 11:949–958

    CAS  Google Scholar 

  • Pruenster M, Wilflingseder D, Banki Z, Ammann CG, Muellauer B, Meyer M, Speth C, Dierich MP, Stoiber H (2005) C-type lectin-independent interaction of complement opsonized HIV with monocyte-derived dendritic cells. Eur J Immunol 35:2691–2698

    PubMed  CAS  Google Scholar 

  • Qin X, Gao B (2006) The complement system in liver diseases. Cell Mol Immunol 3:333–340

    PubMed  CAS  Google Scholar 

  • Qin X, Krumrei N, Grubissich L, Dobarro M, Aktas H, Perez G, Halperin JA (2003) Deficiency of the mouse complement regulatory protein mCd59b results in spontaneous hemolytic anemia with platelet activation and progressive male infertility. Immunity 18:217–227

    PubMed  CAS  Google Scholar 

  • Qin X, Hu W, Song W, Grubissich L, Hu X, Wu G, Ferris S, Dobarro M, Halperin JA (2009) Generation and phenotyping of mCd59a and mCd59b double-knockout mice. Am J Hematol 84:65–70

    PubMed  CAS  Google Scholar 

  • Reboul J, Schuller E, Pialoux G, Rey MA, Lebon P, Allinquant B, Brun-Vezinet F (1989) Immunoglobulins and complement components in 37 patients infected by HIV-1 virus: comparison of general (systemic) and intrathecal immunity. J Neurol Sci 89:243–252

    PubMed  CAS  Google Scholar 

  • Rees-Roberts D, Mullen LM, Gounaris K, Selkirk ME (2010) Inactivation of the complement anaphylatoxin C5a by secreted products of parasitic nematodes. Int J Parasitol 40:527–532

    PubMed Central  PubMed  CAS  Google Scholar 

  • Reid ME, Mallinson G, Sim RB, Poole J, Pausch V, Merry AH, Liew YW, Tanner MJ (1991) Biochemical studies on red blood cells from a patient with the Inab phenotype (decay-accelerating factor deficiency). Blood 78:3291–3297

    PubMed  CAS  Google Scholar 

  • Reisinger EC, Vogetseder W, Berzow D, Kofler D, Bitterlich G, Lehr HA, Wachter H, Dierich MP (1990) Complement-mediated enhancement of HIV-1 infection of the monoblastoid cell line U937. AIDS (London, England) 4:961–965

    CAS  Google Scholar 

  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220

    PubMed  CAS  Google Scholar 

  • Richman DD, Wrin T, Little SJ, Petropoulos CJ (2003) Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci U S A 100:4144–4149

    PubMed Central  PubMed  CAS  Google Scholar 

  • Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ (2009) The challenge of finding a cure for HIV infection. Science 323:1304–1307

    PubMed  CAS  Google Scholar 

  • Robinson HL (2007) HIV/AIDS vaccines: 2007. Clin Pharmacol Ther 82:686–693

    PubMed  CAS  Google Scholar 

  • Rozek W, Ricardo-Dukelow M, Holloway S, Gendelman HE, Wojna V, Melendez LM, Ciborowski P (2007) Cerebrospinal fluid proteomic profiling of HIV-1-infected patients with cognitive impairment. J Proteome Res 6:4189–4199

    PubMed  CAS  Google Scholar 

  • Rus H, Cudrici C, Niculescu F (2005) C5b-9 complement complex in autoimmune demyelination and multiple sclerosis: dual role in neuroinflammation and neuroprotection. Ann Med 37:97–104

    PubMed  CAS  Google Scholar 

  • Saifuddin M, Parker CJ, Peeples ME, Gorny MK, Zolla-Pazner S, Ghassemi M, Rooney IA, Atkinson JP, Spear GT (1995) Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55 and CE59 in complement resistance of cell derived and primary isolates of HIV-1. J Exp Med 182:501–509

    PubMed  CAS  Google Scholar 

  • Saifuddin M, Hedayati T, Atkinson JP, Holguin MH, Parker CJ, Spear GT (1997) Human immunodeficiency virus type 1 incorporates both glycosyl phosphatidylinositol-anchored CD55 and CD59 and integral membrane CD46 at levels that protect from complement-mediated destruction. J Gen Virol 78:1907–1911

    PubMed  CAS  Google Scholar 

  • Saifuddin M, Hart ML, Gewurz H, Zhang Y, Spear GT (2000) Interaction of mannose-binding lectin with primary isolates of human immunodeficiency virus type 1. J Gen Virol 81:949–955

    PubMed  CAS  Google Scholar 

  • Sanders ME, Koski CL, Robbins D, Shin ML, Frank MM, Joiner KA (1986) Activated terminal complement in cerebrospinal fluid in Guillain–Barre syndrome and multiple sclerosis. J Immunol 136:4456–4459

    PubMed  CAS  Google Scholar 

  • Sanders ME, Alexander EL, Koski CL, Frank MM, Joiner KA (1987) Detection of activated terminal complement (C5b-9) in cerebrospinal fluid from patients with central nervous system involvement of primary Sjogren's syndrome or systemic lupus erythematosus. J Immunol 138:2095–2099

    PubMed  CAS  Google Scholar 

  • Schmitz J, Zimmer JP, Kluxen B, Aries S, Bogel M, Gigli I, Schmitz H (1995) Antibody-dependent complement-mediated cytotoxicity in sera from patients with HIV-1 infection is controlled by CD55 and CD59. J Clin Investig 96:1520–1526

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sheng A, Lan J, Wu H, Lu J, Wang Y, Chu Q, Jia Z, Song M, Liu L, Wang W (2010) A clinical case–control study on the association between mannose-binding lectin and susceptibility to HIV-1 infection among northern Han Chinese population. Int J Immunogenet 37:445–454

    PubMed  CAS  Google Scholar 

  • Shingai M, Nishimura Y, Klein F, Mouquet H, Donau OK, Plishka R, Buckler-White A, Seaman M, Piatak M Jr, Lifson JD et al (2013) Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia. Nature 503:277–280

    PubMed  CAS  Google Scholar 

  • Singh KK, Lieser A, Ruan PK, Fenton T, Spector SA (2008) An age-dependent association of mannose-binding lectin-2 genetic variants on HIV-1-related disease in children. J Allergy Clin Immunol 122:173–180, 180 e171-172

    PubMed Central  PubMed  CAS  Google Scholar 

  • Singh KK, Nathamu S, Adame A, Alire TU, Dumaop W, Gouaux B, Moore DJ, Masliah E, H.I.V.N.R.C.G. (2011) Expression of mannose binding lectin in HIV-1-infected brain: implications for HIV-related neuronal damage and neuroAIDS. Neurobehav HIV Med 3:41–52

    PubMed Central  PubMed  Google Scholar 

  • Spear GT, Sullivan BL, Takefman DM, Landay AL, Lint TF (1991) Human immunodeficiency virus (HIV)-infected cells and free virus directly activate the classical complement pathway in rabbit, mouse and guinea-pig sera; activation results in virus neutralization by virolysis. Immunology 73:377–382

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spear GT, Takefman DM, Sullivan BL, Landay AL, Zolla-Pazner S (1993) Complement activation by human monoclonal antibodies to human immunodeficiency virus. J Virol 67:53–59

    PubMed Central  PubMed  CAS  Google Scholar 

  • Speth C, Stockl G, Mohsenipour I, Wurzner R, Stoiber H, Lass-Florl C, Dierich MP (2001) Human immunodeficiency virus type 1 induces expression of complement factors in human astrocytes. J Virol 75:2604–2615

    PubMed Central  PubMed  CAS  Google Scholar 

  • Speth C, Dierich MP, Gasque P (2002a) Neuroinvasion by pathogens: a key role of the complement system. Mol Immunol 38:669–679

    PubMed  CAS  Google Scholar 

  • Speth C, Schabetsberger T, Mohsenipour I, Stockl G, Wurzner R, Stoiber H, Lass-Florl C, Dierich MP (2002b) Mechanism of human immunodeficiency virus-induced complement expression in astrocytes and neurons. J Virol 76:3179–3188

    PubMed Central  PubMed  CAS  Google Scholar 

  • Speth C, Stoiber H, Dierich MP (2003) Complement in different stages of HIV infection and pathogenesis. Int Arch Allergy Immunol 130:247–257

    PubMed  CAS  Google Scholar 

  • Speth C, Williams K, Hagleitner M, Westmoreland S, Rambach G, Mohsenipour I, Schmitz J, Wurzner R, Lass-Florl C, Stoiber H et al (2004) Complement synthesis and activation in the brain of SIV-infected monkeys. J Neuroimmunol 151:45–54

    PubMed  CAS  Google Scholar 

  • Speth C, Dierich MP, Sopper S (2005) HIV-infection of the central nervous system: the tightrope walk of innate immunity. Mol Immunol 42:213–228

    PubMed  CAS  Google Scholar 

  • Spudich S, Gonzalez-Scarano F (2012) HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harb Perspect Med 2:a007120

    PubMed Central  PubMed  Google Scholar 

  • Stoiber H, Pinter C, Siccardi AG, Clivio A, Dierich MP (1996) Efficient destruction of human immunodeficiency virus in human serum by inhibiting the protective action of complement factor H and decay accelerating factor (DAF, CD55). J Exp Med 183:307–310

    PubMed  CAS  Google Scholar 

  • Stoiber H, Clivio A, Dierich MP (1997) Role of complement in HIV infection. Annu Rev Immunol 15:649–674

    PubMed  CAS  Google Scholar 

  • Stoiber H, Kacani L, Speth C, Wurzner R, Dierich MP (2001) The supportive role of complement in HIV pathogenesis. Immunol Rev 180:168–176

    PubMed  CAS  Google Scholar 

  • Stoiber H, Speth C, Dierich MP (2003) Role of complement in the control of HIV dynamics and pathogenesis. Vaccine 21(Suppl 2):S77–S82

    PubMed  Google Scholar 

  • Stoiber H, Banki Z, Wilflingseder D, Dierich MP (2008a) Complement-HIV interactions during all steps of viral pathogenesis. Vaccine 26:3046–3054

    PubMed  CAS  Google Scholar 

  • Stoiber H, Soederholm A, Wilflingseder D, Gusenbauer S, Hildgartner A, Dierich MP (2008b) Complement and antibodies: a dangerous liaison in HIV infection? Vaccine 26(Suppl 8):I79–I85

    PubMed  CAS  Google Scholar 

  • Sugita Y, Tobe T, Oda E, Tomita M, Yasukawa K, Yamaji N, Takemoto T, Furuichi K, Takayama M, Yano S (1989) Molecular cloning and characterization of MACIF, an inhibitor of membrane channel formation of complement. J Biochem (Tokyo) 106:555–557

    CAS  Google Scholar 

  • Sun X, Funk CD, Deng C, Sahu A, Lambris JD, Song WC (1999) Role of decay-accelerating factor in regulating complement activation on the erythrocyte surface as revealed by gene targeting. Proc Natl Acad Sci U S A 96:628–633

    PubMed Central  PubMed  CAS  Google Scholar 

  • Susal C, Kirschfink M, Kropelin M, Daniel V, Opelz G (1994) Complement activation by recombinant HIV-1 glycoprotein gp120. J Immunol 152:6028–6034

    PubMed  CAS  Google Scholar 

  • Szabo J, Prohaszka Z, Toth FD, Gyuris A, Segesdi J, Banhegyi D, Ujhelyi E, Minarovits J, Fust G (1999) Strong correlation between the complement-mediated antibody-dependent enhancement of HIV-1 infection and plasma viral load. AIDS (London, England) 13:1841–1849

    CAS  Google Scholar 

  • Tan Y, Liu L, Luo P, Wang A, Jia T, Shen X, Wang M, Zhang S (2009) Association between mannose-binding lectin and HIV infection and progression in a Chinese population. Mol Immunol 47:632–638

    PubMed  CAS  Google Scholar 

  • Telen MJ, Green AM (1989) The Inab phenotype: characterization of the membrane protein and complement regulatory defect. Blood 74:437–441

    PubMed  CAS  Google Scholar 

  • Thieblemont N, Haeffner-Cavaillon N, Haeffner A, Cholley B, Weiss L, Kazatchkine MD (1995) Triggering of complement receptors CR1 (CD35) and CR3 (CD11b/CD18) induces nuclear translocation of NF-kappa B (p50/p65) in human monocytes and enhances viral replication in HIV-infected monocytic cells. J Immunol 155:4861–4867

    PubMed  CAS  Google Scholar 

  • Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73:6199–6209

    PubMed Central  PubMed  CAS  Google Scholar 

  • Walker BD, Burton DR (2008) Toward an AIDS vaccine. Science 320:760–764

    PubMed  CAS  Google Scholar 

  • Welsh RM Jr, Cooper NR, Jensen FC, Oldstone MB (1975) Human serum lyses RNA tumour viruses. Nature 257:612–614

    PubMed  CAS  Google Scholar 

  • Welsh RM Jr, Jensen FC, Cooper NR, Oldstone MB (1976) Inactivation of lysis of oncornaviruses by human serum. Virology 74:432–440

    PubMed  Google Scholar 

  • Wu G, Hu W, Shahsafaei A, Song W, Dobarro M, Sukhova GK, Bronson RR, Shi GP, Rother RP, Halperin JA et al (2009) Complement regulator CD59 protects against atherosclerosis by restricting the formation of complement membrane attack complex. Circulat Res 104:550–558

    PubMed  CAS  Google Scholar 

  • Wu G, Chen T, Shahsafaei A, Hu W, Bronson RT, Shi GP, Halperin JA, Aktas H, Qin X (2010) Complement regulator CD59 protects against angiotensin II-induced abdominal aortic aneurysms in mice. Circulation 121:1338–1346

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu Y, Zhang C, Jia L, Wen C, Liu H, Wang Y, Sun Y, Huang L, Zhou Y, Song H (2009) A novel approach to inhibit HIV-1 infection and enhance lysis of HIV by a targeted activator of complement. Virol J 6:123

    PubMed Central  PubMed  Google Scholar 

  • Yamashina M, Ueda E, Kinoshita T, Takami T, Ojima A, Ono H, Tanaka H, Kondo N, Orii T, Okada N et al (1990) Inherited complete deficiency of 20-kilodalton homologous restriction factor (CD59) as a cause of paroxysmal nocturnal hemoglobinuria. N Engl J Med 323:1184–1189

    PubMed  CAS  Google Scholar 

  • Ying H, Ji X, Hart ML, Gupta K, Saifuddin M, Zariffard MR, Spear GT (2004) Interaction of mannose-binding lectin with HIV type 1 is sufficient for virus opsonization but not neutralization. AIDS Res Hum Retrovir 20:327–335

    PubMed  CAS  Google Scholar 

  • Yu Q, Yu R, Qin X (2010) The good and evil of complement activation in HIV-1 infection. Cell Mole Immunol 7:334–340

    CAS  Google Scholar 

  • Zheng X, Saunders TL, Camper SA, Samuelson LC, Ginsburg D (1995) Vitronectin is not essential for normal mammalian development and fertility. Proc Natl Acad Sci U S A 92:12426–12430

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhou X, Hu W, Qin X (2008) The role of complement in the mechanism of action of rituximab for B-cell lymphoma: implications for therapy. Oncologist 13:954–966

    PubMed  CAS  Google Scholar 

  • Zhou HF, Yan H, Stover CM, Fernandez TM, Rodriguez de Cordoba S, Song WC, Wu X, Thompson RW, Schwaeble WJ, Atkinson JP et al (2012) Antibody directs properdin-dependent activation of the complement alternative pathway in a mouse model of abdominal aortic aneurysm. Proc Natl Acad Sci U S A 109:E415–E422

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Institutes of Health grants NIHR21CA141324 and 1R01CA166144 (to X.B.Q.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebin Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Dai, S., Gordon, J. et al. Complement and HIV-I infection/HIV-associated neurocognitive disorders. J. Neurovirol. 20, 184–198 (2014). https://doi.org/10.1007/s13365-014-0243-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-014-0243-9

Keywords

Navigation