Skip to main content

Advertisement

Log in

Microglia activation by SIV-infected macrophages: alterations in morphology and cytokine secretion

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

HIV infection in the brain and the resultant encephalitis affect approximately one third of individuals infected with HIV, regardless of treatment with antiretroviral drugs. Microglia are the resident phagocytic cell type in the brain, serving as a “first responder” to neuroinvasion by pathogens. The early events of the microglial response to productively infected monocyte/macrophages entering the brain can best be investigated using in vitro techniques. We hypothesized that activation of microglia would be specific to the presence of simian immunodeficiency virus (SIV)-infected macrophages as opposed to responses to macrophages in general. Purified microglia were grown and stimulated with control or SIV-infected macrophages. After 6 h, aliquots of the supernatant were analyzed for 23 cytokines using Millipore nonhuman primate-specific kit. In parallel experiments, morphologic changes and cytokine expression by individual microglia were examined by immunofluorescence. Surprisingly, the presence of macrophages was more important to the microglial response rather than whether the macrophages were infected with SIV. None of the cytokines examined were unique to co-incubation with SIV-infected macrophages compared with control macrophages, or their supernatants. Media from SIV-infected macrophages, however, did induce secretion of higher levels of IL-6 and IL-8 than the other treatments. As resident macrophages in the brain, microglia would be expected to have a strong response to infiltrate innate immune cells such as monocyte/macrophages. This response is triggered by incubation with macrophages, irrespective of whether or not they are infected with SIV, indicating a rapid, generalized immune response when infiltrating macrophages entering the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  PubMed  CAS  Google Scholar 

  • Bell JE (1998) The neuropathology of adult HIV infection. Rev Neurol (Paris) 154(12):816–829

    CAS  Google Scholar 

  • Bernardino AL et al (2008) Toll-like receptors: insights into their possible role in the pathogenesis of Lyme neuroborreliosis. Infect Immun 76(10):4385–4395

    Article  PubMed  CAS  Google Scholar 

  • Cinque P et al (1998) Elevated cerebrospinal fluid levels of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis and local viral replication. AIDS 12(11):1327–1332

    Article  PubMed  CAS  Google Scholar 

  • D'Aversa TG, Eugenin EA, Berman JW (2008) CD40–CD40 ligand interactions in human microglia induce CXCL8 (interleukin-8) secretion by a mechanism dependent on activation of ERK1/2 and nuclear translocation of nuclear factor-kappaB (NFkappaB) and activator protein-1 (AP-1). J Neurosci Res 86(3):630–639

    Article  PubMed  Google Scholar 

  • El-Hage N et al (2011) Toll-like receptor expression and activation in astroglia: differential regulation by HIV-1 Tat, gp120, and morphine. Immunol Invest 40(5):498–522

    Article  PubMed  CAS  Google Scholar 

  • Gibb R, Kolb B (1998) A method for vibratome sectioning of Golgi–Cox stained whole rat brain. J Neurosci Methods 79(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Ivey NS et al (2009) Association of FAK activation with lentivirus-induced disruption of blood–brain barrier tight junction-associated ZO-1 protein organization. J Neurovirol 15(4):312–323

    Article  PubMed  CAS  Google Scholar 

  • Kohler C (2007) Allograft inflammatory factor-1/ionized calcium-binding adapter molecule 1 is specifically expressed by most subpopulations of macrophages and spermatids in testis. Cell Tissue Res 330(2):291–302

    Article  PubMed  Google Scholar 

  • Kraft-Terry SD et al (2009) A coat of many colors: neuroimmune crosstalk in human immunodeficiency virus infection. Neuron 64(1):133–145

    Article  PubMed  CAS  Google Scholar 

  • Mani N et al (2010) Vascular endothelial growth factor enhances migration of astroglial cells in subventricular zone neurosphere cultures. J Neurosci Res 88(2):248–257

    Article  PubMed  CAS  Google Scholar 

  • Mankowski JL et al (2004) Cerebrospinal fluid markers that predict SIV CNS disease. J Neuroimmunol 157(1–2):66–70

    Article  PubMed  CAS  Google Scholar 

  • Marcondes MC et al (2007) Enrichment and persistence of virus-specific CTL in the brain of simian immunodeficiency virus-infected monkeys is associated with a unique cytokine environment. J Immunol 178(9):5812–5819

    PubMed  CAS  Google Scholar 

  • McKimmie CS, Fazakerley JK (2005) In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. J Neuroimmunol 169(1–2):116–125

    Article  PubMed  CAS  Google Scholar 

  • McKimmie CS, Graham GJ (2010) Astrocytes modulate the chemokine network in a pathogen-specific manner. Biochem Biophys Res Commun 394(4):1006–1011

    Article  PubMed  CAS  Google Scholar 

  • Narayan O et al (1982) Slow virus replication: the role of macrophages in the persistence and expression of visna viruses of sheep and goats. J Gen Virol 59(Pt 2):345–356

    Article  PubMed  CAS  Google Scholar 

  • Ohsawa K et al (2004) Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem 88(4):844–856

    Article  PubMed  CAS  Google Scholar 

  • Orandle MS et al (2001) Macaques with rapid disease progression and simian immunodeficiency virus encephalitis have a unique cytokine profile in peripheral lymphoid tissues. J Virol 75(9):4448–4452

    Article  PubMed  CAS  Google Scholar 

  • Orandle MS et al (2002) Enhanced expression of proinflammatory cytokines in the central nervous system is associated with neuroinvasion by simian immunodeficiency virus and the development of encephalitis. J Virol 76(11):5797–5802

    Article  PubMed  CAS  Google Scholar 

  • Renner NA et al (2011a) MCP-3/CCL7 production by astrocytes: implications for SIV neuroinvasion and AIDS encephalitis. J Neurovirol 17(2):146–152

    Article  PubMed  CAS  Google Scholar 

  • Renner NA, Lackner AA, Maclean AG (2011b) Blood–brain barrier disruption and encephalitis in animal models of aids. In: Tkachev S (ed) Non-flavivirus encephalitis. Intech, Shanghai, pp 87–102, NIHMS347695

    Google Scholar 

  • Renner NA et al (2012) S100beta as a novel and accessible indicator for the presence of monocyte-driven encephalitis in AIDS. Neuropathol Appl Neurobiol 38(2):162–174

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Amill V et al (2010) Short communication: Lack of immune response in rapid progressor morphine-dependent and SIV/SHIV-infected rhesus macaques is correlated with downregulation of TH1 cytokines. AIDS Res Hum Retroviruses 26(8):919–922

    Article  PubMed  CAS  Google Scholar 

  • Roberts ES, Masliah E, Fox HS (2004) CD163 identifies a unique population of ramified microglia in HIV encephalitis (HIVE). J Neuropathol Exp Neurol 63(12):1255–1264

    PubMed  Google Scholar 

  • Sasseville VG et al (1996) Chemokine expression in simian immunodeficiency virus-induced AIDS encephalitis. Am J Pathol 149(5):1459–1467

    PubMed  CAS  Google Scholar 

  • Sevigny JJ et al (2007) An evaluation of neurocognitive status and markers of immune activation as predictors of time to death in advanced HIV infection. Arch Neurol 64(1):97–102

    Article  PubMed  Google Scholar 

  • Shah A, Kumar A (2010) HIV-1 gp120-mediated increases in IL-8 production in astrocytes are mediated through the NF-kappaB pathway and can be silenced by gp120-specific siRNA. J Neuroinflammation 7:96

    Article  PubMed  CAS  Google Scholar 

  • Shah A et al (2011) HIV-1 gp120 induces expression of IL-6 through a nuclear factor-kappa B-dependent mechanism: suppression by gp120 specific small interfering RNA. PLoS One 6(6):e21261

    Article  PubMed  CAS  Google Scholar 

  • Skibo GG et al (2000) Microglia in organotypic hippocampal slice culture and effects of hypoxia: ultrastructure and lipocortin-1 immunoreactivity. Neuroscience 96(2):427–438

    Article  PubMed  CAS  Google Scholar 

  • Sopper S et al (1996) The effect of simian immunodeficiency virus infection in vitro and in vivo on the cytokine production of isolated microglia and peripheral macrophages from rhesus monkey. Virology 220(2):320–329

    Article  PubMed  CAS  Google Scholar 

  • Sugama S et al (2009) Possible roles of microglial cells for neurotoxicity in clinical neurodegenerative diseases and experimental animal models. Inflamm Allergy Drug Targets 8(4):277–284

    Article  PubMed  CAS  Google Scholar 

  • Suidan GL et al (2010) CD8 T cell-initiated vascular endothelial growth factor expression promotes central nervous system vascular permeability under neuroinflammatory conditions. J Immunol 184(2):1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Tambuyzer BR, Nouwen EJ (2005) Inhibition of microglia multinucleated giant cell formation and induction of differentiation by GM-CSF using a porcine in vitro model. Cytokine 31(4):270–279

    Article  PubMed  CAS  Google Scholar 

  • Tassi M et al (2006) Behavior of in vitro cultured ameboid microglial cells migrating on Muller cell end-feet in the quail embryo retina. Glia 54(5):376–393

    Article  PubMed  Google Scholar 

  • Westmoreland SV, Halpern E, Lackner AA (1998) Simian immunodeficiency virus encephalitis in rhesus macaques is associated with rapid disease progression. J Neurovirol 4(3):260–268

    Article  PubMed  CAS  Google Scholar 

  • Williams KC, Hickey WF (1995) Traffic of hematogenous cells through the central nervous system. Curr Top Microbiol Immunol 202:221–245

    Article  PubMed  CAS  Google Scholar 

  • Williams KC, Hickey WF (2002) Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 25:537–562

    Article  PubMed  CAS  Google Scholar 

  • Williams KC et al (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques. Implications for the neuropathogenesis of AIDS. J Exp Med 193(8):905–916

    Article  PubMed  CAS  Google Scholar 

  • Williams R et al (2009) HIV-1 Tat co-operates with IFN-gamma and TNF-alpha to increase CXCL10 in human astrocytes. PLoS One 4(5):e5709

    Article  PubMed  Google Scholar 

  • Xiong H et al (2003) Inhibition of long-term potentiation by interleukin-8: implications for human immunodeficiency virus-1-associated dementia. J Neurosci Res 71(4):600–607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PHS grants RR00164, MH077544, RR20159, RR16816 and OD11104. Nicole Renner was supported by a Louisiana Board of Regents Fellowship (LEQSF(2007–2012)-GF15). SIVmac251 was obtained from the Virus Characterization, Isolation and Production Core, Division of Microbiology, TNPRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew G. MacLean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renner, N.A., Sansing, H.A., Morici, L.A. et al. Microglia activation by SIV-infected macrophages: alterations in morphology and cytokine secretion. J. Neurovirol. 18, 213–221 (2012). https://doi.org/10.1007/s13365-012-0100-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-012-0100-7

Keywords

Navigation