Skip to main content
Log in

Vibrations in hemipteran and coleopteran insects: behaviors and application in pest management

  • Review
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Many groups of insects utilize substrate-borne vibrations for communication. They display various behaviors in response to vibrations in sexual and social communication and in predator–prey interactions. Although the number of reports on communication and behaviors using vibrations has continued to increase across various insect orders, there are several studies of the exploitation of vibrations for pest management in Hemiptera and Coleoptera. Here, we review the studies of behaviors and communication using vibrations in hemipteran and coleopteran insects. For instance, pentatomid bugs display species- and sex-specific vibrational signals during courtship, whereas cerambycid beetles show startle responses to vibrations in the context of predator–prey interactions. Concepts and case studies in pest management using vibrations—especially regarding the disruption of communication and behavior—are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from the work of Takanashi et al. (2016) and Tsubaki et al. (2014)

Fig. 3

Similar content being viewed by others

References

  • Acheampong S, Mitchell BK (1997) Quiescence in the Colorado potato beetle, Leptinotarsa decemlineata. Entomol Exp Appl 82:83–89

    Article  Google Scholar 

  • Breidbach O (1986) Studies on the stridulation of Hylotrupes bajulus (L.) (Cerambycidae, Coleoptera): communication through support vibration-morphology and mechanics of the signal. Behav Proc 12:169–186

    Article  CAS  Google Scholar 

  • Claridge MF, Morgan JC, Moulds MS (1999) Substrate-transmitted acoustic signals of the primitive cicada, Tettigarcta crinita Distant (Hemiptera: Cicadoidea: Tettigarctidae). J Nat Hist 33:1831–1834

    Article  Google Scholar 

  • Cocroft RB (1996) Insect vibrational defence signals. Nature 382:679–680

    Article  Google Scholar 

  • Cocroft RB, Rodríguez R (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Article  Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Ann Rev Entomol 48:29–50

    Article  CAS  Google Scholar 

  • Čokl A, Gogala A, Blaževič A (1978) Principles of sound recognition in three Pentatomide bug species (Heteroptera). Biol Vestn 26:81–94

    Google Scholar 

  • Čokl A, Virant-Doberlet M, Mcdowell A (1999) Vibrational directionality in the southern green stink bug, Nezara viridula (L.), is mediated by female song. Anim Behav 58:1277–1283

    Article  PubMed  Google Scholar 

  • Čokl A, Virant-Doberlet M, Stritih N (2000) The structure and function of songs emitted by southern green stink bugs from Brazil, Florida, Italy and Slovenia. Physiol Entomol 25:196–205

    Article  Google Scholar 

  • Djemai I, Casas J, Magal C (2004) Parasitoid foraging decisions mediated by artificial vibrations. Anim Behav 67:567–571

    Article  Google Scholar 

  • Eben A, Mühlethaler R, Gross J, Hoch H (2014) First evidence of acoustic communication in the pear psyllid Cacopsylla pyri L. (Hemiptera: Psyllidae). J Pest Sci 88:87–95

    Article  Google Scholar 

  • Endo J, Numata H (2017) Effects of embryonic responses to clutch mates on egg hatching patterns of Pentatomidae (Heteroptera). Physiol Entomol 42:412–417

    Article  CAS  Google Scholar 

  • Endo J, Takanashi T, Mukai H, Numata H (2018) Egg-cracking vibration as a cue for stink bug siblings to synchronize hatching. Curr Biol. https://doi.org/10.1016/j.cub.2018.11.024

    Article  PubMed  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS ONE 7:e32954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs in insects. Adv Insect Physiol 27:1–228

    Article  Google Scholar 

  • Fleming AJ, Lindeman AA, Carroll AL, Yack JE (2013) Acoustics of the mountain pine beetle (Dendroctonus ponderosae) (Curculionidae, Scolytinae): sonic, ultrasonic, and vibration characteristics. Can J Zool 91:235–244

    Article  Google Scholar 

  • Gish M, Dafni A, Inbar M (2012) Young aphids avoid erroneous dropping when evading mammalian herbivores by combining input from two sensory modalities. PLoS ONE 7:e32706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogala M (1984) Vibration producing structures and songs of terrestrial Heteroptera as systematic character. Biol Vestn 32:19–36

    Google Scholar 

  • Gogala M (1990) Distribution of low frequency vibrational songs in local Heteroptera. Scopolia Suppl 1:125–132

    Google Scholar 

  • Goulson D, Birch MC, Wyatt TD (1994) Mate location in the deathwatch beetle, Xestobium rufovillosum De Geer (Anobiidae): orientation to substrate vibrations. Anim Behav 47:899–907

    Article  Google Scholar 

  • Greenfield MD (2002) Signalers and receivers. Oxford University Press, New York

    Google Scholar 

  • Guedes RNC, Yack JE (2016) Shaking youngsters and shaken adults: female beetles eavesdrop on larval seed vibrations to make egg-laying decisions. PLoS ONE 11:e0150034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall DG, Richardson ML, Ammar ED, Halbert SE (2013) Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomol Exp Appl 146:207–223

    Article  Google Scholar 

  • Hanrahan SA, Kirchner WH (1994) Acoustic orientation and communication in desert tenebrionid beetles in sand dunes. Ethology 97:26–32

    Article  Google Scholar 

  • Hartbauer M (2010) Collective defense of Aphis nerii and Uroleucon hypochoeridis (Homoptera, Aphididae) against natural enemies. PLoS ONE 5:e10417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge

    Google Scholar 

  • Hill PSM, Shadley JR (2001) Talking back: sending soil vibration signals to lekking prairie mole cricket males. Am Zool 41:1200–1214

    Google Scholar 

  • Hoch H, Deckert J, Wessel A (2006) Vibrational signalling in a Gondwanan relict insect (Hemiptera: Coleorrhyncha: Peloridiidae). Biol Lett 2:222–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoch H, Mühlethaler R, Wachmann E, Stelbrink B, Wessel A (2011) Celebenna thomarosa gen. n., sp. n. (Hemiptera, Fulgoromorpha, Cixiidae, Bennini) from Indonesia: Sulawesi with notes on its ecology and behaviour. Dtsch Entomol Z 58:241–250

    Article  Google Scholar 

  • Hosomi A (1996) Effect of vibration to the infestation of Apriona japonica (Thomson) (Coleoptera: Cerambycidae) adults on the fig. In: Proceedings of Japan informal group meeting on human response to vibration held at the Hokkaido safety and health service, pp 25–34

  • Ichikawa T (1976) Mutual communication by substrate vibrations in the mating behavior of planthoppers (Homoptera: Delphacidae). Appl Entomol Zool 11:8–21

    Article  Google Scholar 

  • Ichikawa T, Ishii S (1974) Mating signal of the brown planthopper, Nilaparvata lugens Stål (Homoptera: Delphacidae): vibration of the substrate. Appl Entomol Zool 9:196–198

    Article  Google Scholar 

  • Kanmiya K (1996) Discovery of male acoustic signals in the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Appl Entomol Zool 31:255–262

    Article  Google Scholar 

  • Kanmiya K (2006) Mating behaviour and vibratory signals in whiteflies (Hemiptera: Aleyrodidae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor and Francis, London, pp 365–379

    Google Scholar 

  • Kanmiya K, Sonobe R (2002) Records of two citrus pest whiteflies in Japan with special reference to their mating sounds (Homoptera: Aleyrodidae). Appl Entomol Zool 37:487–495

    Article  Google Scholar 

  • Keil TA (1997) Functional morphology of insect mechanoreceptors. Microsc Res Tech 39:506–531

    Article  CAS  PubMed  Google Scholar 

  • Kishi M, Takanashi T (2019) Tonic immobility and startle responses induced by substrate-borne vibrations in the sap beetle, Phenolia (Lasiodites) picta (Coleoptera: Nitidulidae). Jpn J Appl Entomol Zool (In press) (In Japanese with English abstract)

  • Kiyotake H, Matsumoto H, Nakayama S, Sakai M, Miyatake T, Ryuda M, Hayakawa Y (2014) Gain of long tonic immobility behavioral trait causes the red flour beetle to reduce anti-stress capacity. J Insect Physiol 60:92–97

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi F, Yamane A, Ikeda T (1984) The Japanese pine sawyer beetle as the vector of pine wilt disease. Ann Rev Entomol 29:115–135

    Article  Google Scholar 

  • Koczor S, Čokl A (2015) Percussion signals of Lygus rugulipennis Poppius (Heteroptera: Miridae). Cent Eur J Biol 9:543–549

    Google Scholar 

  • Kojima W, Ishikawa Y, Takanashi T (2012a) Deceptive vibratory communication: pupae of a beetle exploit the freeze response of larvae to protect themselves. Biol Lett 8:717–720

    Article  PubMed  PubMed Central  Google Scholar 

  • Kojima W, Ishikawa Y, Takanashi T (2012b) Pupal vibratory signals of a group-living beetle that deter larvae: are they mimics of predator cue? Commun Integr Biol 5:262–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Kojima W, Takanashi T, Ishikawa Y (2012c) Vibratory communication in the soil: pupal signals deter larval intrusion in a group-living beetle Trypoxylus dichotoma. Behav Ecol Sociobiol 66:171–179

    Article  Google Scholar 

  • Kon M, Oe A, Numata H, Hidaka T (1988) Comparison of the mating behavior between two sympatric species Nezara antennata and N. viridula (Heteroptera: Pentatomidae) with special reference to sound emission. J Ethol 6:91–98

    Article  Google Scholar 

  • Lazzari C, Manrique G, Schilman P (2006) Vibratory communication in Triatominae (Heteroptera: Reduviidae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor and Francis, London, pp 297–304

    Google Scholar 

  • Liao YC, Yang MM (2017) First evidence of vibrational communication in Homotomidae (Psylloidea) and comparison of substrate-borne signals of two allied species of the genus Macrohomotoma Kuwayama. J Insect Behav 30:567–581

    Article  Google Scholar 

  • Lighton JRB (1987) Cost of tokking: the energetics of substrate communication in the tok-tok beetle, Psammodes striatus. J Comp Physiol B 157:11–20

    Article  Google Scholar 

  • Lubanga UK, Guédot C, Percy DM, Steinbauer MJ (2014) Semiochemical and vibrational cues and signals mediating mate finding and courtship in Psylloidea (Hemiptera): a synthesis. Insects 5:577–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Lujo S, Hartman E, Norton K, Pregmon E, Rohde B, Mankin RW (2016) Disrupting mating behavior of Diaphorina citri (Liviidae). J Econ Entomol 109:2373–2379

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni V, Presern J, Lucchi A, Virant-Doberlet M (2009) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401–413

    Article  PubMed  Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Article  Google Scholar 

  • Mitomi M, Ichikawa T, Okamoto H (1984) Morphology of the vibration-producing organ in adult rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Appl Entomol Zool 19:407–417

    Article  Google Scholar 

  • Mizutani N (2006) Pheromones of male stink bugs and their attractiveness to their parasitoids. Jpn J Appl Entomol Zool 50:87–99 (In Japanese with English summary)

    Article  CAS  Google Scholar 

  • Mukai H (2016) Parental regulation for hatching plasticity. Jpn J Appl Entomol Zool 60:67–75 (In Japanese with English summary)

    Article  Google Scholar 

  • Mukai H, Hironaka M, Tojo S, Nomakuchi S (2012) Maternal vibration induces synchronous hatching in a subsocial burrower bug. Anim Behav 84:1443–1448

    Article  Google Scholar 

  • Mukai H, Hironaka M, Tojo S, Nomakuchi S (2014) Maternal vibration: an important cue for embryo hatching in a subsocial shield bug. PLoS ONE 9:e87932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai H, Hironaka M, Tojo S, Nomakuchi S (2018) Maternal hatching synchronization in a subsocial burrower bug mitigates the risk of future sibling cannibalism. Ecol Evol 8:3376–3381

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishino H, Mukai H, Takanashi T (2016) Chordotonal organs in hemipteran insects: unique peripheral structures but conserved central organization revealed by comparative neuroanatomy. Cell Tissue Res 366:549–572

    Article  PubMed  Google Scholar 

  • Nomakuchi S, Yanagi T, Baba N, Takahira A, Hironaka M, Filippi L (2012) Provisioning call by mothers of a subsocial shield bug. J Zool 288:50–56

    Article  Google Scholar 

  • Numata H, Kon M, Fujii H, Hidaka T (1989) Sound production in the bean bug, Riptortus clavatus Thunberg (Heteroptera: Alydidae). Appl Entomol Zool 24:169–173

    Article  Google Scholar 

  • Percy DM, Taylor GS, Kennedy M (2006) Psyllid communication: Acoustic diversity, mate recognition and phylogenetic signal. Invertebr Syst 20:431–445

    Article  Google Scholar 

  • Polajnar J, Eriksson A, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2015) Manipulating behaviour with substrate-borne vibrations—potential for insect pest control. Pest Manag Sci 71:15–23

    Article  CAS  PubMed  Google Scholar 

  • Polajnar J, Eriksson A, Virant-Doberlet M, Mazzoni V (2016a) Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field. J Pest Sci 89:909–921

    Article  Google Scholar 

  • Polajnar J, Maistrello L, Bertarella A, Mazzoni V (2016b) Vibrational communication of the brown marmorated stink bug (Halyomorpha halys). Physiol Entomol 41:249–259

    Article  Google Scholar 

  • Sakakibara M (2016) Introduction to true bug biology. Ann Rept Plant Prot North Japan 67:14–23 (In Japanese)

    Google Scholar 

  • Schilman PE, Manrique G, Lazzari CR (2001) Comparison of disturbance stridulation in five species of triatominae bugs. Acta Trop 79:171–178

    Article  CAS  PubMed  Google Scholar 

  • Shimoda M, Honda K (2013) Insect reactions to light and its applications to pest management. Appl Entomol Zool 48:413–421

    Article  Google Scholar 

  • Söderberg O, Sozinov A, Lindroos VK (2005) Giant magnetostrictive materials. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology, 2nd edn. Elsevier, Amsterdam, pp 1–3

    Google Scholar 

  • Stölting H, Moore TE, Lakes-Harlan R (2002) Substrate vibrations during acoustic signalling in the cicada Okanagana rimosa. J Insect Sci 2:1–7

    Article  Google Scholar 

  • Takanashi T, Fukaya M, Nakamuta K, Skals N, Nishino H (2016) Substrate vibrations mediate behavioral responses via femoral chordotonal organs in a cerambycid beetle. Zool Lett 2:18

    Article  Google Scholar 

  • Tishechkin DY (2003) Vibrational communication in Cercopoidea and Fulgoroidea (Homoptera: Cicadina) with notes on classification of higher taxa. Russ Entomol J 12:129–181

    Google Scholar 

  • Tishechkin DY (2008) On the similarity of temporal pattern of vibrational calling signals in different species of Fulgoroidea (Homoptera: Auchenorrhyncha). Russ Entomol J 17:349–357

    Google Scholar 

  • Tishechkin DY (2016) New data on vibrational calling signals of Fulgoroidea (Homoptera: Auchenorrhyncha) from the Asian part of Palaearctic with new records of three species of Cixiidae. Russ Entomol J 25:307–322

    Article  Google Scholar 

  • Travassos MA, Pierce NE (2000) Acoustics, context and function of vibrational signalling in a lycaenid butterfly-ant mutualism. Anim Behav 60:13–26

    Article  CAS  PubMed  Google Scholar 

  • Tsubaki R, Hosoda N, Kitajima H, Takanashi T (2014) Substrate-borne vibrations induce behavioral responses of a leaf-dwelling cerambycid Paraglenea fortunei. Zool Sci 31:789–794

    Article  PubMed  Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Article  Google Scholar 

  • Virant-Doberlet M, Žežlina I (2014) Vibrational communication of Metcalfa pruinosa (Hemiptera: Fulgoroidea: Flatidae). Ann Entomol Soc Am 100:73–82

    Article  Google Scholar 

  • Wang Q (2017) Cerambycidae of the world: biology and pest management. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wenninger EJ, Hall DG, Mankin RW (2009) Vibrational communication between the sexes in Diaphorina citri (Hemiptera: Psyllidae). Ann Entomol Soc Am 102:547–555

    Article  Google Scholar 

  • Wessel A (2006) Stridulation in the Coleoptera—an overview. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor and Francis, London, pp 397–404

    Google Scholar 

Download references

Acknowledgements

We thank H. Nishino for the drawing of chordotonal organs in P. stali, K. Honda, and members of Shindou unit for kind cooperation during studies of SIP project. Thanks are also due to two anonymous reviewers for the helpful comments of this manuscript and editors for kind handling of this special issue, ‘Behavioral control and pest management using vibrations’. This work was partly supported by Cabinet Office, Government of Japan, Cross-ministerial Strategic Innovation Promotion Program (SIP), “Technologies for creating next-generation agriculture, forestry and fisheries” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO), and by Narishige Zoological Science Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuma Takanashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takanashi, T., Uechi, N. & Tatsuta, H. Vibrations in hemipteran and coleopteran insects: behaviors and application in pest management. Appl Entomol Zool 54, 21–29 (2019). https://doi.org/10.1007/s13355-018-00603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-018-00603-z

Keywords

Navigation