Skip to main content
Log in

Biotechnological advancements in alfalfa improvement

  • Plant Genetics ∙ Review
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Review of biotechnology research in alfalfa shows that molecular techniques are extensively being used for basic and applied research toward alfalfa improvement. Biotechnological approaches have been used in two major areas, genomics and transgenics. In genomics, molecular markers, structural and functional genomics allowed identification of genes of interest and their regulatory components. Alfalfa being obstinate to genetic and genomic analysis, comparative genomics is used for molecular and genetic dissection of various plant processes in alfalfa. Alternatively, transgenic approach involves incorporation of specific and useful genes into alfalfa to improve the traits of interest. Input traits to improve agronomic performance and output traits to improve forage quality, or to produce novel industrial/pharmaceutical proteins, are the focus of current transgenic research in alfalfa. However, transgenic approach is controversial requiring cautious experimental design to combat bioisafety concerns. Ideally, forage alfalfa needs to possess more fermentable carbohydrates, proteins with balanced amino acid profile that degrade slower in rumen, improved winter hardiness, better water use efficiency, pest resistance and no anti-quality factors. Concerted efforts are required to bring together maximum of these characteristic features into the alfalfa plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

Bt:

Bacillus thuringiensis

CAD:

Cinnamyl alcohol dehydrogenase

EST:

Expressed sequence tag

GM:

Genetically modified

GMO:

Genetically modified organism

IPM:

Integrated pest management

MAS:

Marker assisted selection

QTL:

Quantitative trait loci

RAPD:

Random amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

RR:

Roundup ready

SFP:

Single feature polymorphism

SNP:

Single nucleotide polymorphism

SRAP:

Sequence related amplified polymorphism

SSR:

Simple sequence repeat

STS:

Sequence tagged site

WUE:

Water use efficiency

References

  • Agrawal R, Singh NR, Ribeiro FH, Delgass WN (2007) Sustainable fuel for the transportation sector. Proc Natl Acad Sci USA 104:4828–4833

    Article  PubMed  CAS  Google Scholar 

  • Altenbach SB, Pearson KW, Leung FW, Sun SSM (1987) Cloning and sequence analysis of a cDNA encoding a Brazil nut protein exceptionally rich in methionine. Plant Mol Biol 8:239–250

    Article  CAS  Google Scholar 

  • Austin-Philips S, Ziegelhoffer T (2001) The production of value-added proteins in transgenic alfalfa. In: Spangenberg G (ed) Molecular Breeding of Forage Crops. Kluwer, Dordrecht, pp 285–301

    Google Scholar 

  • Avraham T, Badani H, Galili S, Amir R (2004) Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine γ-synthase gene. Plant Biotechnol J 3:71–79

    Article  CAS  Google Scholar 

  • Bagga S, Adams HP, Rodriguez FD, Kemp JD, Sengupta-Gopalan C (2004) Coexpression of the maize [delta]-zein and [beta]-zein genes results in stable accumulation of [delta]-zein in endoplasmic reticulum [mdash] derived protein bodies formed by [beta]-zein. Plant Cell 9:1683–1696

    Article  Google Scholar 

  • Bao A-K, Wang S-M, Wu G-Q, Xi J-J et al. (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    Article  CAS  Google Scholar 

  • Barry TN, McNabb WC (1999) The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Brit J Nutr 81:263–272

    PubMed  CAS  Google Scholar 

  • Baucher M, Bernard-Vailhe MA, Chabbert B, Besle JM, Opsomer C, Van Montagu M, Botterman J (1999) Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol 39:437–447

    Article  PubMed  CAS  Google Scholar 

  • Bellucci M, Alpini A, Arcioni S (2002) Zein accumulation in forage species (Lotus corniculatus and Medicago sativa) and co-expression of the γ-zein: KDEL and β-zein: KDEL polypeptides in tobacco leaf. Plant Cell Rep 20:848–856

    Article  CAS  Google Scholar 

  • Bouton J, 2008. Biotechnology delivers better alfalfa. Available at http://hayandforage.com/alfalfasymposium/coverage/biotechnology-delivers-better-alfalfa

  • Bradfisch GA, Schnepf HE, Kim L, 2001. Bacillus thuringiensis isolates active against weevils. US Patent Appl US 20010001710A1.

  • Britto AF, Broderick GA (2006) Effect of varying dietary ratios of alfalfa to corn silage on production and nitrogen utilization in lactating dairy cows. J Dairy Sci 89:3924–393

    Article  Google Scholar 

  • Broeckling CD, Huhman DV, Farag MA, Smith JT et al. (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336

    Article  PubMed  CAS  Google Scholar 

  • Brouwer DJ, Osborn TC (1999) A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.). Theor Appl Genet 99:1194–1200

    Article  CAS  Google Scholar 

  • Brummer EC (2004) Applying genomics to alfalfa breeding programs. Crop Sci 44:1904–1907

    Article  Google Scholar 

  • Brummer EC, Bouton JH, Kochert G (1993) Development of an RFLP map in diploid alfalfa. Theor Appl Genet 86:329–332

    Article  CAS  Google Scholar 

  • Buxton DR, Redfearn DD, 1997. Plant limitations to fiber digestion and utilization. American Society for Nutritional Sciences Available at http://jn.nutrition.org/cgi/reprint/127/5/814S.

  • Calderini O, Bovone T, Scotti C, Piano FPE, Arcioni S (2007) Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12. Plant Cell Rep 26:611–615

    Article  PubMed  CAS  Google Scholar 

  • Casler MD, Vogel KP (1999) Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci 39:12–20

    Article  Google Scholar 

  • Castonguay Y, Cloutier J, Bertrand A, Michaud R, Laberge S (2010) SRAP polymorphisms associated with superior freezing tolerance in alfalfa (Medicago sativa spp. sativa). Theor Appl Genet 120:1611–1619

    Article  PubMed  CAS  Google Scholar 

  • Chandra A (2009) Screening global Medicago germplasm for weevil (Hypera postica Gyll.) tolerance and estimation of genetic variability using molecular markers. Euphytica 169:363–374

    Article  CAS  Google Scholar 

  • Cheeke PR (1996) Biological effects of feed and forage saponins and their impact on animal production. In: Waller GR, Yamasaki K (eds) Saponins Used in Food and Agriculture. Plenum, New York, USA, pp 377–385

    Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnol 25:759–761

    Article  CAS  Google Scholar 

  • Chen L, Auh C-K, Dowling P, Bell J, Chen F et al. (2003) Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J 1:437–449

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Reddy MSS, Temple S, Jackson L et al. (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J 48:113–124

    Article  PubMed  CAS  Google Scholar 

  • Choi HK, Kim DJ, Uhm T, Limpens E et al. (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502

    Article  PubMed  CAS  Google Scholar 

  • Chui C-F, Falco SC (1995) A new methionine-rich seed storage protein from maize. Plant Physiol 107:291

    Article  PubMed  CAS  Google Scholar 

  • Combs DK, Hartnell GF (2008) Alfalfa containing the glyphosate-tolerant trait has no effect on feed intake, milk composition, or milk production of dairy cattle. J Dairy Sci 91:673–678

    Article  PubMed  CAS  Google Scholar 

  • Crane C, Dixon RA, Wang Z-Y (2006) Medicago truncatula transformation using root explants. In: Wang K (ed) Agrobacterium protocols, vol 1, 2nd edn. Humana Press, Totowa, pp 137–142

    Google Scholar 

  • D’Aoust MA, Lerouge P, Busse U, Bilodeau P et al. (2004) Efficient and reliable production of pharmaceuticals in alfalfa. In: Fischer R, Schillberg S (eds) Molecular Farming. Wiley-VCH, Weinheim, pp 1–12

    Google Scholar 

  • Dixon RA (2005) Engineering of plant natural product pathways. Curr Opin Plant Biol 8:329–336

    Article  PubMed  CAS  Google Scholar 

  • Doss RP, Gould SJ, Johnson KJR, Flath RA et al. (1989) (Z)-Oxacyclotridec-10-en-2-one an alfalfa weevil feeding deterrent from Medicago rugosa. Phytochem 28:3311–3315

    Article  CAS  Google Scholar 

  • Echt CS, Kidwell KK, Knapp SJ, Osborn TC, McCoy TJ (1993) Linkage mapping in diploid alfalfa (Medicago sativa). Genome 37:61–71

    Article  Google Scholar 

  • Falahati-Anbaran M, Habashi AA, Esfahany M, Mohammaad SA et al. (2007) Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centres of origin of the species. J Genet 86:59–63

    Article  PubMed  CAS  Google Scholar 

  • Fischhoff DA, Fuchs RL, Mcpherson SA, Lavrik PB, Perlak FJ, 1996. Insect-resistant plants. Patent No EP19960100978.

  • Frugier F, Kondorosi A, Crespi M, 1998. Identification of novel putative regulatory genes induced during alfalfa nodule development with a cold-plaque screening procedure. Mol. Plant Microbe. Interac. 11: 358-366; http://www.ncbi.nlm.nih.gov/nucest/AA735021.1.

  • Gallardo K, Signor CL, Vandekerckhove J, Thompson RD et al. (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682

    Article  PubMed  CAS  Google Scholar 

  • Galyean ML, Goetsch AL (1993) Utilization of forage fiber by ruminants. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage Cell Wall Structure and Digestibility. ASA-CSSA-SSSA, Madison, pp 33–71

    Google Scholar 

  • Guo D, Chen F, Inoue K, Blount JW, Dixon RA (2000) Down regulation of caffeic acid 3-o-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88

    Article  Google Scholar 

  • Guo D, Chen J, Wheeler J, Winder J et al. (2001) Improvement of in rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res 10:457–464

    Article  PubMed  CAS  Google Scholar 

  • Halluin K, Botterman, De Greef W (1990) Engineering of herbicide-resistant alfalfa and evaluation under field conditions. Crop Sci 30:866–871

    Article  Google Scholar 

  • Hatfield RD, Weimer PJ (1995) Degradation characteristics of osolated and in situ cell wall lucerne pectic polysaccharides by mixed ruminal microbes. J Sci Food Agri 69:185–196

    Article  CAS  Google Scholar 

  • Hays DB, Skinner DZ (2001) Development of an expressed sequence tag (EST) library for Medicago sativa. Plant Sci 161:517–526

    Article  CAS  Google Scholar 

  • Hisano H, Nandakumar R, Wang Z-Y (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol-Plant 45:306–313

    Article  CAS  Google Scholar 

  • Iantcheva A, Vassileva V, Ugrinoval M, Vlahov M (2009) Development of functional genomic platform for model legume Medicago truncatula in Bulgaria. Biotechnol Biotechnol Eq 23:1440–1443

    Article  CAS  Google Scholar 

  • James C (2009) Global Status of Commercialized Biotech/GM Crops: 2009. ISAAA Brief No. 41. ISAAA, Ithaca, NY

    Google Scholar 

  • Jiang Q, Zhang J-Y, Guo X, Monteros MJ, Wang Z-Y (2009) Physiological characterization of transgenic alfalfa (Medicago sativa) plants for improved drought tolerance. Int J Plant Sci 170:969–978

    Article  CAS  Google Scholar 

  • Jin T, Chang Q, Li W, Yin D et al. (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tiss Org Cult 100:219–227

    Article  CAS  Google Scholar 

  • Joshi SP, Ranjanekar PK, Gupta VS (1999) Molecular markers in plant genome analysis. Curr Sci 77:230–240

    CAS  Google Scholar 

  • Julier B, Flajoulot S, Barre1 P, Cardinet G, et al. 2003. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol. Available at http://www.biomedcentral.com/1471-2229/3/9.

  • Julier B, Bernard K, Gibelin C, Huguet T, Lelièvre F, 2010. QTL for water use efficiency in alfalfa. In: Huyghe C, ed. Sustainable use of Genetic Diversity in Forage and Turf Breeding. Springer: 433-436.

  • Jung HG, Allen MS (1995) Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J Anim Sci 73:2774–2790

    PubMed  CAS  Google Scholar 

  • Jung HG, Casler MD (2006) Maize stem tissues: cell wall concentration and composition during development. Crop Sci 46:1793–1800

    Article  CAS  Google Scholar 

  • Jung HG, Engels FM (2001) Alfalfa stem tissues: rate and extent of cell-wall thinning during ruminal degradation. Netherlands J Agri Sci 49:3–13

    Google Scholar 

  • Jung HG, Mertens DR, Payne AJ (1997) Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber. J Dairy Sci 80:1622–1628

    Article  PubMed  CAS  Google Scholar 

  • Kaló P, Endre G, Zimànyi L, Csanàdi G, Kiss GB (2000) Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theor Appl Genet 100:641–657

    Article  Google Scholar 

  • Khoudi H, Laberge S, Ferullo JM, Bazin R et al. (1999) Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol Bioengineering 64:135–143

    Article  CAS  Google Scholar 

  • Kineman BD, Brummer EC, Paiva NL, Birt DF (2010) Resveratrol from transgenic alfalfa for prevention of aberrant crypt foci in mice. Nutri Cancer 62:351–361

    Article  CAS  Google Scholar 

  • Kiss GB, Csanàdi G, Kalman K, Kaló P, Ökrész L (1993) Construction of a basic genetic map of Medicago using RFLP, RAPD, isozyme and morphological markers. Mol Gen Genet 238:129–137

    PubMed  CAS  Google Scholar 

  • Kortt AA, Caldwell JB, Lilley GG, Higgins TJV (1991) Amino acid and cDNA sequence of a methionine-rich 2S protein from sunflower seed (Helianthus annuus L.). Eur J Biochem 195:329–334

    Article  PubMed  CAS  Google Scholar 

  • Kumar S (2010a) Developments in molecular markers for genetic analysis of plants. In: Kumar A (ed) Plant Genetic Transformation and Molecular Markers. Pointer Publishers, Jaipur, India, pp 426–451

    Google Scholar 

  • Kumar S (2010b) Genomics and marker-assisted breeding for crop improvement. In: Kumar L (ed) Plant Genetic Transformation and Molecular markers. Pointer, Jaipur, India, pp 233–264

    Google Scholar 

  • Kumar S, Chandra A, Pandey KC (2008) Bt transgenic crop: An environment friendly insect-pest management strategy. J Environ Biol 29:641–653

    PubMed  CAS  Google Scholar 

  • Leath KT, Erwin DC, Griffin GD (1988) Diseases and nematodes. In: Hanson AA (ed) Alfalfa and Alfalfa Improvement. American Society of Agronomy, Madison, pp 621–670

    Google Scholar 

  • Li X, Weng J-K, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  PubMed  CAS  Google Scholar 

  • Li X, Weil Y, Nettleton D, Brummer EC (2009) Comparative gene expression profiles between heterotic and non-heterotic hybrids of tetraploid Medicago sativa. BMC Plant Biol 9:107

    Article  PubMed  CAS  Google Scholar 

  • Li W, Wang D, Jin T, Chang Q, Yin D, Xu S, Liu B, Liu L, 2010. The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.).Plant Mol Biol Rep doi:10.1007/s11105-010-0224-y.

  • Manglitz GR, Ratcliffe RH (1988) Insects and mites. In: Hanson AA (ed) Alfalfa and Alfalfa Improvement. American Society of Agronomy, Madison, pp 671–704

    Google Scholar 

  • Martin NP (2008) In: Lacefield G, Forsythe C (eds) Proc of the 28th Kentucky Alfalfa Conference. Cave City Convention Center, Cave City, pp 17–26

    Google Scholar 

  • Mathesius U, Keijzers G, Natera SHA, Weinman JJ et al. (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1:1424–1440

    Article  PubMed  CAS  Google Scholar 

  • Mathison GW, Soofi-Siawash R, Klita PT, Okine EK et al. (1999) Degradability of alfalfa saponins in the digestive tract of sheep and their rate of accumulation in rumen fluid. Can J Anim Sci 79:315–319

    Article  CAS  Google Scholar 

  • Maureira IJ, Osborn TC (2005) Molecular markers in genetics and breeding: improvement of alfalfa (Medicago sativa L.). In: Lörz H, Wenzel G (eds) Molecular Marker Systems in Plant Breeding and Crop Improvement. Springer-Verlag, Berlin, pp 139–154

    Chapter  Google Scholar 

  • McCaslin M, Temple SJ, Tofte JE, 2002. Methods for maximizing expression of transgenic traits in autopolyploid plants. US Patent Appl US-2002-0042928-A1.

  • McCoy T, Walker K, 1984. Alfalfa. In: Ammirato PV, Evans DA, Sharp WR Yamada Y, et al. eds. Handbook of Plant Cell Culture. Vol 3. Crop species, Macmillan Publishing Company: 171-192.

  • McKersie BD, Bowley SR, Harjanto' E, Leprince O (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1177–1181

    PubMed  CAS  Google Scholar 

  • McKersie BD, Murnaghan J, Jones KS, Bowley SR (2000) Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122:1427–1438

    Article  PubMed  CAS  Google Scholar 

  • McMahon LR, McAllister TA, Berg BP, Majak W et al. (2000) A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Can J Plant Sci 80:469–485

    Article  CAS  Google Scholar 

  • Mendis MH, Power JB, Davey MR (1991) Somatic hybrids of the forage legumes Medicago sativa L. and M. falcata L. J Exp Bot 42:1565–1574

    Article  Google Scholar 

  • Mizukami Y, Katol M, Takamizo T, Kanbel M, Inamil S, Hattori K (2006) Interspecific hybrids between Medicago sativa L. and annual Medicago containing alfalfa weevil resistance. Plant Cell Tiss Org Cult 84:79–88

    Article  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  PubMed  CAS  Google Scholar 

  • Nair RB, Bastress KL, Ruegger MO, Denault JW et al. (2004) The Arabidopsis REF1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554

    Article  PubMed  CAS  Google Scholar 

  • Narasimhamoorthy B, Bouton JH, Olsen KM, Sledge MK (2007) Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa. Theor Appl Genet 114:901–913

    Article  PubMed  CAS  Google Scholar 

  • NAS, 2004. Safety of genetically engineered foods: Approaches to assessing unintended health effects. National Academy of Sciences, Washington, DC http://books.nap.edu/catalog/10977.html?onpi_newsdoc07272004.

  • Nester EW, Altosaar I, Stotzky G, 2002. 100 years of Bacillus thuringiensis: a critical scientific assessment. American Academy of Microbiology, Colloquium Report, November 16-18, Ithaca, New York. Available at http://ipm.ifas.ufl.edu/pdf/100_years_of_bt.pdf.

  • Nutter FW Jr, Guan J, Gotlieb AR, Rhodes LH et al. (2002) Quantifying alfalfa yield losses caused by foliar diseases in Iowa, Ohio, Wisconsin, and Vermont. Plant Dis 86:269–277

    Article  Google Scholar 

  • Orloff SB, Putnam DH, Canevari M, Lanini WT, 2009. Avoiding weed shifts and weed resistance in Roundup Ready alfalfa systems. Publication 8362, Division of Agricultural and Natural Resources, University of California. Available at http://anrcatalog.ucdavis.edu/pdf/8362.pdf.

  • Pickering FS, Reis PJ (1993) Effects of abomasal supplements of methionine on wool growth of grazing sheep. Aust J Exp Agri 33:7

    Article  CAS  Google Scholar 

  • Reddy MSS, Chen F, Shadle G, Jackson L et al. (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA 102:16573–16578

    Article  PubMed  CAS  Google Scholar 

  • Reisen P, McCaslin M, Fitzpatrick S, 2009. Roundup Ready alfalfa update and new biotech traits. Available at http://www.wa-hay.org/Proceedings/09%20Proceedings/Roundup%20Ready%20Alfalfa%20Update%20and%20New%20Biotech%20Traits%20-%20Reisen.pdf.

  • Riday H, Brummer EC, Campbell TA, Luth D, Cazcarro PM (2003) Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata. Euphytica 131:37–45

    Article  CAS  Google Scholar 

  • Robins JG, Bauchan RG, Brummer EC (2007a) Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.). Crop Sci 47:11–18

    Article  CAS  Google Scholar 

  • Robins JG, Luth D, Campbell TA, Bauchan GR et al. (2007b) Genetic mapping of biomass production in tetraploid alfalfa. Crop Sci 47:1–10

    Article  CAS  Google Scholar 

  • Rotz CA, Buckmaster DR, Comerford JW (2005) A beef herd model for simulating feed intake, animal performance, and manure excretion in farm systems. J Anim Sci 83:231–242

    PubMed  CAS  Google Scholar 

  • Samac DA, 2009. Promoters for constitutive and tissue-specific expression of transgenes in alfalfa. Available at http://www.naaic.org/TAG/TAGpapers/samac/samac.html.

  • Samac DA, Jung H-JG, Lamb JFS, 2006. Development of alfalfa (Medicago sativa L.) as a feedstock for production of ethanol and other bioproducts. In: Minter SL, ed. Alcoholic Fuels. CRC Press: 79-98.

  • Saruul P, Sreinc F, Somers DA, Samac DA (2002) Production of a biodegradable plastic polymer poly-hydroxybutyrate in transgenic alfalfa (Medicago sativa L.). Crop Sci 42:919–927

    Article  CAS  Google Scholar 

  • Schubert C (2006) Can biofuels finally take center stage? Nature Biotechnol 24:777–784

    Article  CAS  Google Scholar 

  • Sen S, Makkar HPS, Becker K (1998) Alfalfa saponins and their implication in animal nutrition. J Agric Food Chem 46:131–140

    Article  PubMed  CAS  Google Scholar 

  • Shadle G, Chen F, Reddy MSS, Jackson L, Nakashima J, Dixon RA (2007) Down-regulation of hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochem 68:1521–1529

    Article  CAS  Google Scholar 

  • Shahin E, Spielmann A, Suhkapinda K, Simpson RB, Yasher M (1986) Transformation of cultivated alfalfa using disarmed Agrobacterium tumefaciens. Crop Sci 26:1235–1239

    Article  CAS  Google Scholar 

  • Sharma A, Kumar S, Bhatnagar RK, 2010. Bacillus thuringiensis protein Cry6B (BGSC ID 4D8) is toxic to larvae of Hypera postica. Curr Microbiol 61: doi:10.1007/s00284-010-9749-4.

  • Sledge MK, Bouton JH, Dall’Agnoll M, Parrott WA, Kochert G (2002) Identification and confirmation of aluminum tolerance QTL in diploid Medicago sativa subsp. coerulea. Crop Sci 42:1121–1128

    Article  CAS  Google Scholar 

  • Sorina P, Oana-Maria I-B (2010) The six KNOX genes identification on tetraploid Medicago sativa, based on the model plant resources. Romanian Biotechnol Lett 15:32–40

    CAS  Google Scholar 

  • Suárez R, Calderon C, Iturriaga G (2009) Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Sci 49:1791–1799

    Article  CAS  Google Scholar 

  • Tabe LM, Wardley-Richardson T, Ceriotti A, Aryan A et al. (1995) A biotechnological approach to improving the nutritive value of alfalfa. J Anim Sci 73:2752–2759

    PubMed  CAS  Google Scholar 

  • Tadege M, Wen J, He J, Tu H et al. (2008) Large scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347

    Article  PubMed  CAS  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844

    Article  PubMed  CAS  Google Scholar 

  • Tesfaye M, Matthew DD, Deborah SA, Carroll VP (2005) Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. Plant Soil 269:233–243

    Article  CAS  Google Scholar 

  • Tesfaye M, Kevin AT, Silverstein B, Bruna BD et al. (2006) The Affymetrix Medicago GeneChip® array is applicable for transcript analysis of alfalfa (Medicago sativa). Funct Plant Biol 33:783–788

    Article  CAS  Google Scholar 

  • Thomas JC, Wasmann CC, Echt C, Dunn RL et al. (1994) Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa L.). Plant Cell Rep 14:31–36

    Article  CAS  Google Scholar 

  • Tivoli B, Baranger A, Sivasithamparam K, Barbetti MJ (2006) Annual Medicago: from a model crop challenged by a spectrum of necrotrophic pathogens to a model plant to explore the nature of disease resistance. Ann Bot (Lond) 98:1117–1128

    Article  CAS  Google Scholar 

  • Torregrosa C, Cluzet S, Fournier J, Huguet T et al. (2004) Cytological, genetic, and molecular analysis to characterize compatible and incompatible interactions between Medicago truncatula and Colletotrichum trifolii. Mol Plant Microb Interac 17:909–920

    Article  CAS  Google Scholar 

  • USDA, 2005. Determination of non-regulated status for alfalfa genetically engineered for tolerance to the herbicide glyphosate. Federal Register. Vol 70. No. 122. 27 June, 2005. Available at http://edocket.access.gpo.gov/2005/pdf/E5-3323.pdf.

  • Van Dynze A, Putnam DH, Orloff S, Lanini T, et al. 2004. Crop Biotechnology: Feeds for Livestock. Publication 8145. University of California, Division of Agriculture and Natural Resources. http://ucanr.org/freepubs/docs/8145.pdf.

  • Vlahova M, Stefanova G, Petkov P, Barbulova A et al. (2005) Genetic modification of alfalfa (M. sativa L.) for quality improvement and production of novel compounds. Biotechnol Biotechnol Eq 19:56–62

    CAS  Google Scholar 

  • Wang Z-Y, 2003. Biotechnology has potential for forage improvement. AG News and Views: September 2003 Available at http://www.noble.org/ag/Research/Articles/PotentialOfBiotech/index.html.

  • Wang TL, Domoney C, Hedley CL, Casey R et al. (2003) Can we improve the nutritional quality of legume seeds? Plant Physiol 131:886–891

    Article  PubMed  CAS  Google Scholar 

  • Wigdorovitz A, Carrillo C, Dus Santos M, Jrono K et al. (1999) Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1. Virol 255:347–353

    Article  CAS  Google Scholar 

  • Winicov I (2000) Alfin1 transcription factor over expression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta 210:416–422

    Article  PubMed  CAS  Google Scholar 

  • Xie D-Y, Sharma SB, Wright E, Wang Z-W et al. (2006) Metabolic engineering of proanthocyanadins through co-expression of anthocyanadin reductase and the PAP1MYB transcription factor. Plant J 45:895–907

    Article  PubMed  CAS  Google Scholar 

  • Yang WZ, Beauchemin KA, Rode LM (2002) Effects of particle size of alfalfa-based dairy cow diets on site and extent of digestion. J Dairy Sci 85:1958–968

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Gao M, Xu C, Gao J et al. (2008) Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci 105:12164–12169

    Article  PubMed  CAS  Google Scholar 

  • Yang SS, Xu WW, Tesfaye M, Lamb FS et al. (2009) Single-Feature Polymorphism discovery in the transcriptome of tetraploid alfalfa. Plant Genome 2:224–232

    Article  CAS  Google Scholar 

  • Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Open Plant Biol 12:193–201

    Article  CAS  Google Scholar 

  • Young ND, Cannon SB, Sato S, Kim DJ et al. (2005) Sequencing the gene spaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Rouf Mian MA (2003) Functional genomics in forage and turf - present status and future prospects. Afr J Biotechnol 2:521–527

    CAS  Google Scholar 

  • Zhu H, Choi H-K, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Zúñiga BA, Scott P, Moore KJ, Luth D, Brummer EC, 2004. Quantitative trait locus mapping of winter hardiness metabolites in autotetraploid alfalfa (M. sativa). In: Molecular Breeding for Forage and Turf. Springer, Berlin 97–104

Download references

Acknowledgements

The author wish to thank Indian Council of Agricultural Research, and the US Department of Agriculture for the financial support. Author is also thankful to the International Agriculture Program, University of Missouri and Prof. Hari B. Krishnan for hosting the Norman E. Borlaug Fellow Program. I also express my sincere thanks to Nathan Oehrle for proofreading and anonymous reviewers for very critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S. Biotechnological advancements in alfalfa improvement. J Appl Genetics 52, 111–124 (2011). https://doi.org/10.1007/s13353-011-0028-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-011-0028-2

Keywords

Navigation