Skip to main content
Log in

A comparison of the physical and optical properties of anthropogenic air pollutants and mineral dust over Northwest China

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Emissions of mineral dust and its mixing with anthropogenic air pollutants affect both regional and global climates. Our fieldwork in late spring 2007 (April 25–June 15) measured the physical and optical properties of dust storms mixed with local air pollutants at a rural site about 48 km southeast of central Lanzhou. Levels of air pollutants and aerosol optical properties were observed during the experiment, with concentrations of NOx (6.8 ± 3.3 ppb, average ± standard deviation), CO (694 ± 486 ppb), SO2 (6.2 ± 10 ppb), O3 (50.7 ± 13.1 ppb), and PM10 (172 ± 180 μg m−3), and aerosol scattering coefficient (164 ± 89 Mm−1; 1 Mm = 106 m) and absorption coefficient (11.7 ± 6.6 Mm−1), all much lower than the values observed during air pollution episodes in urban areas. During a major dust storm, the mass concentration of PM10 reached 4072 μg m−3, approximately 21-fold higher than in non-dust storm periods. The mixing ratios of trace gases declined noticeably after a cold front passed through. The observed CO/SO2 and CO/NOx ratios during air pollution episodes were 4.2–18.3 and 13.7–80.5, respectively, compared with the corresponding ratios of 38.1–255.7 and 18.0–245.9 during non-pollution periods. Our investigations suggest that dust storms have a significant influence on air quality in areas far from their source, and this large-scale transport of dust and air pollutants produces major uncertainties in the quantification of the global effects of emissions over Northwest China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Wahab S. A., and W. S. Bouhamra, 2004: Diurnal variations of airpollution from motor vehicles in residential area. International Journal of Environmental Studies, 61, 73–98.

    Article  Google Scholar 

  • Akimoto H., 2003: Global air quality and pollution. Science, 302, 1716–1719.

    Article  Google Scholar 

  • Allen D., K. Pickering, and M. Fox-Rabinovitz, 2004: Evaluation of pollutant outflow and CO sources during TRACE-P using model-calculated, aircraftbased, and Measurements of Pollution in the Troposphere (MOPITT)-derived CO concentrations. J. Geophys. Res., 109, D15S03, doi: 10.1029/2003JD004250.

    Google Scholar 

  • Anderson T. L., and J. A. Ogren, 1998: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Sci. Technol., 29, 57–69.

    Article  Google Scholar 

  • Anderson T. L., S. J. Masonis, D. S. Covert, et al., 2003: Variability of aerosol optical properties derived from in-situ aircraft measurements during ACE-Asia. J. Geophys. Res., 108, 8647, doi: 10.1029/2002JD003247.

    Google Scholar 

  • Arimoto R., X. Y. Zhang, B. J. Huebert, et al., 2004: Chemical composition of atmospheric aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia. J. Geophys. Res., 109, D19S04, doi: 10.1029/2003JD004323.

    Google Scholar 

  • Arimoto R., Y. J. Kim, Y. P. Kim, et al., 2006: Characterization of Asian dust during ACE-Asia. Global Planet Change, 52, 23–56.

    Article  Google Scholar 

  • Arnott W. P., H. Moosmüller, P. J. Sheridan, et al., 2003: Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity. J. Geophys. Res., 108, 4034, doi: 10.1029/2002JD002165.

    Article  Google Scholar 

  • Arnott W. P., K. Hamasha, H. Moosmuller, et al., 2005: Towards aerosol light-absorption measurements with a 7-wavelength Aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol., 39, 17–29.

    Article  Google Scholar 

  • Barnard J. C., E. I. Kassianov, T. P. Ackerman, et al., 2007: Estimation of a “radiatively correct” black carbon specific absorption during the Mexico City Metropolitan Area (MCMA) 2003 field campaign. Atmos. Chem. Phys., 7, 1645–1655, doi: 10.5194/acp-7-1645-2007.

    Article  Google Scholar 

  • Baumgartner D., G. Raga, O. Peralta, et al., 2002: Diagnosing black carbon trends in large urban areas using carbon monoxide measurements. J. Geophys. Res., 107, 8342, doi: 10.1029/2001JD000626.

    Article  Google Scholar 

  • Bergin M. H., G. R. Cass, J. Xu, et al., 2001: Aerosol radiative, physical, and chemical properties in Beijing during June 1999. J. Geophys. Res., 106, 17969–17980.

    Article  Google Scholar 

  • Bi J. R., J. P. Huang, Q. A. Fu, et al., 2011: Toward characterization of the aerosol optical properties over Loess Plateau of northwestern China. Journal of Quantitative Spectroscopy & Radiative Transfer, 112, 346–360.

    Article  Google Scholar 

  • Bonasoni P., P. Cristofanelli, F. Calzolari, et al., 2004: Aerosol-ozone correlations during dust transport episodes. Atmos. Chem. Phys., 4, 1201–1215.

    Article  Google Scholar 

  • Bond T. C., and R. W. Bergstrom, 2006: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol., 40, 27–67.

    Article  Google Scholar 

  • Brock C. A., P. K. Hudson, E. R. Lovejoy, et al., 2004: Particle characteristics following cloud-modified transport from Asia to North America. J. Geophys. Res., 109, D23S26, doi: 10.1029/2003JD004198.

    Google Scholar 

  • Campbell J. R., D. L. Hlavka, E. J. Welton, et al., 2002: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19, 431–442.

    Article  Google Scholar 

  • Carmichael G. R., Y. Tang, G. Kurata, et al., 2003a: Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment. J. Geophys. Res., 108, 8823, doi: 10.1029/2002JD003117.

    Article  Google Scholar 

  • Carmichael G. R., Y. Tang, G. Kurata, et al., 2003b: Evaluating regional emission estimates using the TRACE-P observations. J. Geophys. Res., 108, 8810, doi: 10.1029/2002JD003116.

    Article  Google Scholar 

  • Che H., X. Xia, J. Zhu, et al., 2014: Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmos. Chem. Phys., 14, 2125–2138.

    Article  Google Scholar 

  • Che H. Z., X. Y. Zhang, Y. Li, et al., 2007: Horizontal visibility trends in China during 1981–2005. Geophys. Res. Lett., 34, L24706, doi: 10.1029/2007GL031450.

    Article  Google Scholar 

  • Chen B., J. Huang, P. Minnis, et al., 2010: Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements. Atmos. Chem. Phys., 10, 4241–4251.

    Article  Google Scholar 

  • Conant W. C., J. H. Seinfeld, J. Wang, et al., 2003: A model for the radiative forcing during ACEAsia derived from CIRPAS Twin Otter and R/V Ronald H. Brown data and comparison with observations. J. Geophys. Res., 108, 8661, doi: 10.1029/2002JD003260.

    Article  Google Scholar 

  • Crutzen P. J., and M. O. Andreae, 1990: Biomass burning in the tropics–impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 1669–1678.

    Article  Google Scholar 

  • de Gouw J. A., O. R. Cooper, C. Warneke, et al., 2004: Chemical composition of air masses transported from Asia to the U. S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures. J. Geophys. Res., 109, D23S20, doi: 10.1029/2003JD004202.

    Google Scholar 

  • Dentener F. J., G. R. Carmichael, Y. Zhang, et al., 1996: Role of mineral aerosol as a reactive surface in the global troposphere. J. Geophys. Res., 101, 22869–22889.

    Article  Google Scholar 

  • Dickerson R. R., S. Kondragunta, G. Stenchikov, et al., 1997: The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science, 278, 827–830.

    Article  Google Scholar 

  • Draxier R. R., and G. D. Hess, 1998: An overview of the HYSPLIT-4 modelling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine, 47, 295–308.

    Google Scholar 

  • Duce R. A., C. K. Unni, B. J. Ray, et al., 1980: Longrange atmospheric transport of soil dust from Asia to the tropical North Pacific–Temporal variability. Science, 209, 1522–1524.

    Article  Google Scholar 

  • Elminir H. K., 2005: Dependence of urban air pollutants on meteorology. Sci. Total Environ., 350, 225–237.

    Article  Google Scholar 

  • Fowler D., K. Pilegaard, M. A. Sutton, et al., 2009: Atmospheric composition change: Ecosystemsatmosphere interactions. Atmos. Environ., 43, 5193–5267.

    Article  Google Scholar 

  • Gao Y., R. Arimoto, R. A. Duce, et al., 1997: Temporal and spatial distributions of dust and its deposition to the China Sea. Tellus B, 49, 172–189.

    Article  Google Scholar 

  • Heald C. L., D. J. Jacob, R. J. Park, et al., 2005: A large organic aerosol source in the free troposphere missing from current models. Geophys. Res. Lett., 32, L18809, doi: 10.1029/2005GL023831.

    Google Scholar 

  • Heintzenberg J., A. Wiedensohler, T. M. Tuch, et al., 2006: Intercomparisons and aerosol calibrations of 12 commercial integrating nephelometers of three manufacturers. J. Atmos. Oceanic Technol., 23, 902–914.

    Article  Google Scholar 

  • Holben B. N., T. F. Eck, I. Slutsker, et al., 1998: AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1–16.

    Article  Google Scholar 

  • Horvath H., 1993: Atmospheric light-absorption–A review. Atmos. Environ., 27, 293–317.

    Article  Google Scholar 

  • Huang J., P. Minnis, B. Chen, et al., 2008a: Longrange transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, D23212, doi: 10.1029/2008JD010620.

    Article  Google Scholar 

  • Huang, Jianping, Zhang Wu, Zuo Jinqing, et al., 2008b: An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Adv. Atmos. Sci., 25, 906–921.

    Article  Google Scholar 

  • Huang Z. W., J. P. Huang, J. R. Bi, et al., 2010: Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-US joint dust field experiment. J. Geophys. Res., 115, D00K15, doi: 10.1029/2009JD013273.

    Google Scholar 

  • Huebert B. J., T. Bates, P. B. Russell, et al., 2003: An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res., 108, 8633, doi: 10.1029/2003JD003550.

    Article  Google Scholar 

  • Husar R. B., D. M. Tratt, B. A. Schichtel, et al., 2001: Asian dust events of April 1998. J. Geophys. Res., 106, 18317–18330.

    Article  Google Scholar 

  • IPCC, 2013: Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 3–29.

    Google Scholar 

  • Jacob D. J., J. H. Crawford, M. M. Kleb, et al., 2003: Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results. J. Geophys. Res., 108, doi: 10.1029/2002JD003276.

    Google Scholar 

  • Jaffe D., T. Anderson, D. Covert, et al., 1999: Transport of Asian air pollution to North America. Geophys. Res. Lett., 26, 711–714.

    Article  Google Scholar 

  • Jaffe D., S. Tamura, and J. Harris, 2005: Seasonal cycle and composition of background fine particles along the west coast of the US. Atmos. Environ., 39, 297–306.

    Article  Google Scholar 

  • Kalkstein L. S., G. Tan, and J. A. Skindlov, 1987: An evaluation of three clustering procedures for use in synoptic climatological classification. J. Climate Appl. Meteor., 26, 717–730.

    Article  Google Scholar 

  • Kim S. W., A. Jefferson, S. C. Yoon, et al., 2005: Comparisons of aerosol optical depth and surface shortwave irradiance and their effect on the aerosol surface radiative forcing estimation. J. Geophys. Res., 110, D07204, doi: 10.1029/2004JD004989.

    Google Scholar 

  • Li C., L. T. Marufu, R. R. Dickerson, et al., 2007a: Insitu measurements of trace gases and aerosol optical properties at a rural site in northern China during East Asian study of tropospheric aerosols: An international regional experiment 2005. J. Geophys. Res., 112, D22S04, doi: 10.1029/2006JD007592.

    Google Scholar 

  • Li C., S. C. Tsay, J. S. Fu, et al., 2010: Anthropogenic air pollution observed near dust source regions in northwestern China during springtime 2008. J. Geophys. Res., 115, D00K22, doi: 10.1029/2009JD013659.

    Google Scholar 

  • Li Z. Q., H. Chen, M. Cribb, et al., 2007b: Preface to special section on East Asian studies of tropospheric aerosols: An international regional experiment (EAST-AIRE). J. Geophys. Res., 112, D22S00, doi: 10.1029/2007JD008853.

    Google Scholar 

  • Littmann T., 1991: Dust storm frequency in Asia–Climatic control and variability. Int. J. Climatol. 11, 393–412.

    Article  Google Scholar 

  • Mari C., M. J. Evans, P. I. Palmer, et al., 2004: Export of Asian pollution during two cold front episodes of the TRACE-P experiment. J. Geophys. Res., 109, D15S17, doi: 10.1029/2003JD004307.

    Google Scholar 

  • McKendry I. G., A. M. Macdonald, W. R. Leaitch, et al., 2008: Trans-Pacific dust events observed at Whistler, British Columbia during INTEX-B. Atmos. Chem. Phys., 8, 6297–6307.

    Article  Google Scholar 

  • Muller T., A. Nowak, A. Wiedensohler, et al., 2009: Angular illumination and truncation of three different integrating nephelometers: Implications for empirical, size-based corrections. Aerosol Sci. Technol., 43, 581–586.

    Article  Google Scholar 

  • Penner J. E., C. C. Chuang, and K. Grant, 1998: Climate forcing by carbonaceous and sulfate aerosols. Climate Dyn., 14, 839–851.

    Article  Google Scholar 

  • Petzold A., C. Kopp, and R. Niessner, 1997: The dependence of the specific attenuation cross-section on black carbon mass fraction and particle size. Atmos. Environ., 31, 661–672.

    Article  Google Scholar 

  • Prospero J. M., 1999a: Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. USA, 96, 3396–3403.

    Article  Google Scholar 

  • Prospero J. M., 1999b: Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. J. Geophys. Res., 104, 15917–15927.

    Article  Google Scholar 

  • Prospero J. M., and O. L. Mayol-Bracero, 2013: Understanding the transport and impact of african dust on the Caribbean basin. Bull. Amer. Meteor. Soc., 94, 1329–1337.

    Article  Google Scholar 

  • Ramanathan V., P. J. Crutzen, J. Lelieveld, et al., 2001: Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 106, 28371–28398.

    Article  Google Scholar 

  • Ramanathan V., and G. Carmichael, 2008. Global and regional climate changes due to black carbon. Nature Geoscience, 1, 221–227.

    Article  Google Scholar 

  • Rosenfeld D., Y. Rudich, and R. Lahav, 2001: Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. USA, 98, 5975–5980.

    Article  Google Scholar 

  • Schuster G. L., O. Dubovik, B. N. Holben, et al., 2005: Inferring black carbon content and specific absorption from AERONET retrievals. J. Geophys. Res., 110, D10S17, doi: 10.1029/2004JD004548.

    Google Scholar 

  • Schwarz J. P., R. S. Gao, J. R. Spackman, et al., 2008: Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophys. Res. Lett., 35, 13810–13814.

    Article  Google Scholar 

  • Sharma S., J. R. Brook, H. Cachier, et al., 2002: Light absorption and thermal measurements of black carbon in different regions of Canada. J. Geophys. Res., 107, AAC 11–1-AAC 11–11, doi: 10.1029/2002JD002496.

    Google Scholar 

  • Streets D. G., N. Y. Tsai, H. Akimoto, et al., 2000: Sulfur dioxide emissions in Asia in the period 1985–1997. Atmos. Environ., 34, 4413–4424.

    Article  Google Scholar 

  • Streets D. G., and S. T. Waldhoff, 2000: Present and future emissions of air pollutants in China: SO2, NOx, and CO. Atmos. Environ., 34, 363–374.

    Article  Google Scholar 

  • Streets D. G., K. J. Jiang, X. L. Hu, et al., 2001: Climate change—Recent reductions in China’s greenhouse gas emissions. Science, 294, 1835–1837.

    Article  Google Scholar 

  • Streets D. G., T. C. Bond, G. R. Carmichael, et al., 2003a: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 108, 8809, doi: 10.1029/2002JD003093.

    Article  Google Scholar 

  • Streets D. G., K. F. Yarber, J. H. Woo, et al., 2003b: Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 17, 1099, doi: 10.1029/2003GB002040.

    Article  Google Scholar 

  • Sullivan R. C., S. A. Guazzotti, D. A. Sodeman, et al., 2007: Direct observations of the atmospheric processing of Asian mineral dust. Atmos. Chem. Phys., 7, 1213–1236.

    Article  Google Scholar 

  • Sun Y. L., G. S. Zhuang, Y. Wang, et al., 2005: Chemical composition of dust storms in Beijing and implications for the mixing of mineral aersol with pollution aerosol on the pathway. J. Geophys. Res., 110, D24209, doi: 10.1029/2005JD006054.

    Article  Google Scholar 

  • Tegen I., A. A. Lacis, and I. Fung, 1996: The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419–422.

    Article  Google Scholar 

  • Tu F. H., D. C. Thornton, A. R. Bandy, et al., 2003: Dynamics and transport of sulfur dioxide over the Yellow Sea during TRACE-P. J. Geophys. Res., 108, 8790, doi: 10.1029/2002JD003227.

    Article  Google Scholar 

  • van Aardenne J. A., G. R. Carmichael, H. Levy, et al., 1999: Anthropogenic NOx emissions in Asia in the period 1990–2020. Atmos. Environ., 33, 633–646.

    Article  Google Scholar 

  • van Curen R. A., S. S. Cliff, K. D. Perry, et al., 2005: Asian continental aerosol persistence above the marine boundary layer over the eastern North Pacific: Continuous aerosol measurements from Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2). J. Geophys. Res., 110, D09S90, doi: 10.1029/2004JD004973.

    Google Scholar 

  • Wang T., T. F. Cheung, Y. S. Li, et al., 2002: Emission characteristics of CO, NOx, SO2 and indications of biomass burning observed at a rural site in eastern China. J. Geophys. Res., 107, ACH 9–1–ACH 9–10, doi: 10.1029/2001JD000724.

    Google Scholar 

  • Wang T., C. H. Wong, T. F. Cheung, et al., 2004: Relationships of trace gases and aerosols and the emission characteristics at Lin’an, a rural site in eastern China, during spring 2001. J. Geophys. Res., 109, D19S05, doi: 10.1029/2003JD004119.

    Google Scholar 

  • Wang X., J. P. Huang, M. X. Ji, et al., 2008: Variability of East Asia dust events and their long-term trend. Atmos. Environ., 42, 3156–3165.

    Article  Google Scholar 

  • Wang X., J. P. Huang, R. D. Zhang, et al., 2010: Surface measurements of aerosol properties over Northwest China during ARM China 2008 deployment. J. Geophys. Res., 115, D00K27, doi: 10.1029/2009JD013467.

    Google Scholar 

  • Wang X., S. J. Doherty, and J. P. Huang, 2013: Black carbon and other light-absorbing impurities in snow across northern China. J. Geophys. Res., 118, 1471–1492.

    Article  Google Scholar 

  • Wang X. P., D. L. Mauzerall, Y. T. Hu, et al., 2005: A high-resolution emission inventory for eastern China in 2000 and three scenarios for 2020. Atmos. Environ., 39, 5917–5933.

    Article  Google Scholar 

  • Wake C. P., P. A. Mayewski, Z. Li, et al., 1994: Modern eolian dust deposition in central Asia. Tellus, 46B, 220–233.

    Article  Google Scholar 

  • Welton E. J., J. R. Campbell, J. D. Spinhirne, et al., 2001: Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems. Proc. SPIE, 4153, 151–158, doi: 10.1117/12.417040.

    Article  Google Scholar 

  • Woo J. H., D. G. Streets, G. R. Carmichael, et al., 2003: Contribution of biomass and biofuel emissions to trace gas distributions in Asia during the TRACEP experiment. J. Geophys. Res., 108, 8812, doi: 10.1029/2002JD003200.

    Article  Google Scholar 

  • Wu G. J., T. D. Yao, B. Q. Xu, et al., 2010: Dust concentration and flux in ice cores from the Tibetan Plateau over the past few decades. Tellus B, 62, 197–206.

    Article  Google Scholar 

  • Xia X. A., H. B. Chen, P. C. Wang, et al., 2005: Aerosol properties and their spatial and temporal variations over North China in spring 2001. Tellus, 57B, 28–39.

    Google Scholar 

  • Xia X. G., P. C. Wang, Y. S. Wang, et al., 2008: Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert. Geophys. Res. Lett., 35, L16804, doi: 10.1029/2008GL034981.

    Article  Google Scholar 

  • Xu J., M. H. Bergin, R. Greenwald, et al., 2004: Aerosol chemical, physical, and radiative characteristics near a desert source region of Northwest China during ACE-Asia. J. Geophys. Res., 109, D19S03, doi: 10.1029/2003JD004239.

    Google Scholar 

  • Yuan H., G. Zhuang, J. Li, et al., 2008: Mixing of mineral with pollution aerosols in dust season in Beijing: Revealed by source apportionment study. Atmos. Environ., 42, 2141–2157.

    Article  Google Scholar 

  • Zhang M. G., I. Uno, G. R. Carmichael, et al., 2003a: Large-scale structure of trace gas and aerosol distributions over the western Pacific Ocean during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment. J. Geophys. Res., 108, 8820, doi: 10.1029/2002JD002946.

    Article  Google Scholar 

  • Zhang Q., D. G. Streets, G. R. Carmichael, et al., 2009: Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131–5153.

    Article  Google Scholar 

  • Zhang R., D. A. Hegg, J. Huang, et al., 2013: Source attribution of insoluble light-absorbing particles in seasonal snow across northern China. Atmos. Chem. Phys., 13, 6091–6099.

    Article  Google Scholar 

  • Zhang, Renjiang, Xu Yongfu, and Han Zhiwei, 2003b: Inorganic chemical composition and source signature of PM2.5 in Beijing during ACE-Asia period. Chin. Sci. Bull., 48, 1002–1005.

    Article  Google Scholar 

  • Zhang X. Y., S. L. Gong, R. Arimoto, et al., 2003c: Characterization and temporal variation of Asian dust aerosol from a site in the northern Chinese deserts. J. Atmos. Chem., 44, 241–257.

    Article  Google Scholar 

  • Zhang X. Y., S. L. Gong, Z. X. Shen, et al., 2003d: Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia. 1: Network observations. J. Geophys. Res., 108, 4261, doi: 10.1029/2002JD002632.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang  (王 鑫).

Additional information

Supported by the National Nature Science Foundation of China (41175134, 41105110, and 41305025), Fundamental Research Funds for Central Universities of China (LZUJBKY-2014-110), and China 111 Project (B13045).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Pu, W., Shi, J. et al. A comparison of the physical and optical properties of anthropogenic air pollutants and mineral dust over Northwest China. J Meteorol Res 29, 180–200 (2015). https://doi.org/10.1007/s13351-015-4092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-015-4092-0

Key words

Navigation