Skip to main content
Log in

Thermographic investigations and dynamic identification tests for non-destructive structural assessment and enhanced FE modelling of a historical iron-strengthened masonry church

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

The paper deals with the description of detailed non-destructive in-situ tests and the analysis of the dynamic behaviour of the Santa Maria Maddalena church, located on the Ischia isle and partially damaged by the seismic event of August 21st, 2017. This church is a very special type of structure built in 1896 according to a mixed ‘baraccato’ constructive technique, based on tuff masonry walls strengthened by thin iron profiles in the main parts and timber elements in its back part. After the seismic event, a detailed survey of the church was done and passive thermography imaging as well as dynamic tests under operational conditions were carried out afterwards. The paper outlines a methodological approach where data and information collected from in-situ tests and surveys about geometry, masonry texture, crack patterns and vibration properties are collectively analyzed for the non-destructive structural assessment and finite element modelling of the church. The paper first describes how the experimental outcomes allowed to enhance the knowledge about the “baraccato” construction system specific to this church and its dynamic response under operational conditions. Setting of a three-dimensional finite element model of the whole church is described afterwards, considering the experimental results, to have a deeper insight into the dynamic behaviour of the structure under different assumptions, mainly regarding the constraint conditions at the roof levels and the values of Young’s modulus and unit weight of masonry. Specific analyses have been also carried out aimed at quantitative discrimination of the numerical vibration modes as ‘local’ or ‘global’. The obtained results remarked the importance of accurately planning dynamic tests on similar structures characterized by significant complexity in their structural organization to achieve a reliable assessment of their dynamic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10.
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. ICOMOS 2003 – Principles for the Analysis, Conservation and Structural Restoration of Architectural Heritage. Available online: https://www.icomos.org/images/DOCUMENTS/Charters/structures_e.pdf (last accessed on September 11, 2022).

  2. Cescatti E, Salzano P, Casapulla C, Ceroni F, da Porto F, Prota A (2020) Damages to masonry churches after 2016–2017 Central Italy seismic sequence and definition of fragility curves. Bull Earthq Eng 18:297–329. https://doi.org/10.1007/s10518-019-00729-7

    Article  Google Scholar 

  3. Salzano P, Casapulla C, Ceroni F, Prota A (2020) Seismic vulnerability and simplified safety assessments of masonry churches in the Ischia Island (Italy) after the 2017 earthquake. Int J Architect Heritage 16:136–162. https://doi.org/10.1080/15583058.2020.1759732

    Article  Google Scholar 

  4. Lagomarsino S (2012) Damage assessment of churches after L’Aquila earthquake (2009). Bull Earthq Eng 10:73–92. https://doi.org/10.1007/s10518-011-9307-x

    Article  Google Scholar 

  5. De Matteis G, Criber E, Brando G (2016) Damage probability matrices for three-nave masonry churches in Abruzzi after the 2009 L’Aquila earthquake. Int J Archit Heritage 10:120–145. https://doi.org/10.1080/15583058.2015.1113340

    Article  Google Scholar 

  6. Canuti C, Carbonari S, Dall’Asta A, Dezi L, Gara F, Leoni G (2019) Post-earthquake damage and vulnerability assessment of churches in the Marche Region struck by the 2016 Central Italy seismic sequence. Int J Architect Heritage. https://doi.org/10.1080/15583058.2019.1653403

    Article  Google Scholar 

  7. Brigante D, Rainieri C, Notarangelo M, Fabbrocino G (2022) Vibration-based procedure for the structural assessment of heritage structure. In: D’amico and Venuti (Eds.). Handbook of Cultural Heritage Analysis (book), Springer International Publishing, pp.1167–1186. doi: https://doi.org/10.1007/978-3-030-60016-7_40

  8. Torres W, Almazán JL, Sandoval C, Boroschek R (2017) Operational modal analysis and FE model updating of the Metropolitan Cathedral of Santiago. Chile Eng Struct 143:169–188. https://doi.org/10.1016/j.engstruct.2017.04.008

    Article  Google Scholar 

  9. Bassoli E, Vincenzi L, D’Altri AM, de Miranda S, Forghieri M, Castellazzi G (2018) Ambient vibration-based finite element model updating of an earthquake-damaged masonry tower. Struct Control Healt Monitor 25(5):e2150. https://doi.org/10.1002/stc.2150

    Article  Google Scholar 

  10. Bayraktar A, Altunişik AC, Sevim B, Türker T (2011) Seismic response of a historical masonry minaret using a finite element model updated with operational modal testing. JVC/J Vibrat Control 17(1):129–149. https://doi.org/10.1177/1077546309353288

    Article  Google Scholar 

  11. Conde B, Ramos LF, Oliveira DV, Riveiro B, Solla M (2017) Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: Application to Vilanova bridge. Eng Struct 148:621–638. https://doi.org/10.1016/j.engstruct.2017.07.011

    Article  Google Scholar 

  12. Roselli I, Malena M, Calavagli Mongelli M, Gioffrè M, De Canio G, de Felice G (2018) Health assessment and ambient vibration testing of the “Ponte delle Torri” of Spoleto during the 2016–2017 Central Italy seismic sequence. J Civil Struct Health Monit 8:199–216. https://doi.org/10.1007/s13349-018-0268-5

    Article  Google Scholar 

  13. Pellegrini D, Girardi M, Lourenço PB, Masciotta MG, Mendes N, Padovani C, Ramos LF (2018) Modal analysis of historical masonry structures: linear perturbation and software benchmarking. Constr Build Mater 189:1232–1250. https://doi.org/10.1016/j.conbuildmat.2018.09.034

    Article  Google Scholar 

  14. Rainieri C, Fabbrocino G (2011) Operational modal analysis for the characterization of heritage structures. Geofizika 28(1):109–126

    Google Scholar 

  15. Ceroni F, Pecce M, Manfredi G (2010) Seismic assessment of the bell tower of Santa Maria del Carmine: problems and solutions. J Earthquake Eng 14(1):30–56. https://doi.org/10.1080/13632460902988968

    Article  Google Scholar 

  16. Ceroni F, Sica S, Garofano A, Pecce M (2014) Evaluation of the natural vibration frequencies of a historical masonry building accounting for SSI. Soil Dyn Earthq Eng 64:95–101. https://doi.org/10.1016/j.soildyn.2014.05.003

    Article  Google Scholar 

  17. Russo S (2014) Using experimental dynamic modal analysis in assessing structural integrity in historic buildings. Open Const Build Technol J 8:357–368. https://doi.org/10.2174/1874836801408010357

    Article  Google Scholar 

  18. UNESCO 2019 - Operational Guidelines for the Implementation of the World Heritage Convention. Available online: http://whc.unesco.org/en/guidelines/ (last accessed on September 11, 2022).

  19. Gentile C, Ruccolo A, Canali F (2019) Long-term monitoring for the condition-based structural maintenance of the Milan Cathedral. Construction and Building Materials 228

  20. Ramos LF, Marques L, Lourenco PB, De Roeck G, Campos-Costa A, Roque J (2010) Monitoring historical masonry structures with operational modal analysis: two case studies. Mech Syst Signal Process 24(5):1291–1305

    Article  Google Scholar 

  21. Bettoni MF (2014) Dynamic monitoring of Mallorca Cathedral. Msc Thesis in SAHC, Barcelona (Spain)

  22. Hicyilmaz KMO, Wilcock T, Izatt C, da Silva J, Langenbach R (2012) Seismic performance of Dhajji Dewari. In: 15th World Conference on Earthquake Engineering, Lisbon, Portugal

  23. Aktas YD (2017) Seismic resistance of traditional timber-frame himiş structures in Turkey: a brief overview. Int Wood Product J 8(1):21–28. https://doi.org/10.1080/20426445.2016.1273683

    Article  MathSciNet  Google Scholar 

  24. Mendes N, Lourenco PB (2009) Seismic assessment of masonry Gaioleiro buildings in Lisbon Portugal. J Earthq Eng 14:80–101. https://doi.org/10.1080/13632460902977474

    Article  Google Scholar 

  25. Salerno G, Geremia F, Pagano E, Zampilli M, Ruggieri N, Stellacci S (2015) The masonry timber framed load bearing structure of ‘baraccato’ system: a numerical model. In: Cruz H, Saporiti Machado J, Campos Costa A, Candeias XP, Ruggieri N, Catarino MJ (eds) Historical Earthquake-Resistant Timber Framing in the Mediterranean Area. Springer, Netherlands, pp 205–213

    Google Scholar 

  26. Ruggieri N (2017) The Borbone ”Istruzioni per gli Ingegnieri”: a historical code for earthquake-resistant constructions. Int J Architect Heritage 11(2):292–304. https://doi.org/10.1080/15583058.2016.1212128

    Article  Google Scholar 

  27. Ruggieri N, Tampone G, Zinno R (eds) (2015) Historical earthquake-resistant timber frames in the Mediterranean area. Springer, Netherlands

    Google Scholar 

  28. Stellacci S, Ruggieri N, Rato V (2016) Gaiola vs. Borbone system: a comparison between 18th century anti-seismic case studies. Int J Architect Heritage 10(6):817–828. https://doi.org/10.1080/15583058.2015.1086840

    Article  Google Scholar 

  29. Casapulla C, Ceroni F, Ranieri C, Argiento LU, Arcamone P, Fabbrocino G (2019). Structural assessment of Santa Maria Maddalena Church in Ischia (Italy) by experimental modal analysis under operational conditions. In Proceedings of the 7th Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2019), M. Papadrakakis and M. Fragiadakis (eds.), Crete, Greece

  30. Marra A, Rainieri C, Fabbrocino G (2022) On the Role of Historical Research in the Structural Condition Assessment of Heritage Structures. In: D'Amico S., Venuti V. (eds). Handbook of Cultural Heritage Analysis. Springer, Cham. doi: https://doi.org/10.1007/978-3-030-60016-7_57.

  31. Rainieri C, Marra A, Rainieri GM, Gargaro D, Pepe M, Fabbrocino G (2015) Integrated non-destructive assessment of relevant structural elements of an Italian heritage site: The Carthusian monastery of Trisulti. J Phys. 628, Article number 012018.

  32. Allemang RJ, Brown DL (1982) A correlation coefficient for modal vector analysis. Proceedings of The 1st International Modal Analysis Conference, Orlando, FL, USA.

  33. Rainieri C, Fabbrocino G, Brigante D (2022) Differentiating local and global vibration modes of heritage masonry buildings through the spatial correlation of modal displacements. Int J Architect Heritage 16(4):597–615. https://doi.org/10.1080/15583058.2020.1825876

    Article  Google Scholar 

  34. Ministero per i Beni e le Attività Culturali (2010). Linee Guida per la valutazione e riduzione del rischio sismico del patrimonio culturale allineate alle nuove Norme Tecniche per le Costruzioni, D.M. 14 gennaio 2008, Circolare 26/ 2010.

  35. Gruppo di Lavoro INGV. (2017, September 6): Rapporto di sintesi preliminare sul Terremoto dell'isola d'Ischia (Casamicciola) M4.0 del 21 agosto 2017 (6 settembre 2017). Zenodo. doi: https://doi.org/10.5281/zenodo.886045.

  36. Avdelidis NP, Moropoulou A (2004) Applications of infrared thermography for the investigation of historic structures. J Cult Herit 5:119–127

    Article  Google Scholar 

  37. Maione A, Argiento LU, Casapulla C, Prota A (2018) Management of multi-source information to identify the typology of the horizontal structures in historical masonry buildings: the case study of the Museum of Capodimonte in Naples (Italy). Frattura ed Integrità Strutturale 46:240–251. https://doi.org/10.3221/IGF-ESIS.46.22

    Article  Google Scholar 

  38. Binda L, Saisi A, Tiraboschi C (2000) Investigation procedures for the diagnosis of historic masonries. Constr Build Mater 14(4):199–233. https://doi.org/10.1016/S0950-0618(00)00018-0

    Article  Google Scholar 

  39. Binda L, Cantini L, Condoleo P, Saisi A (2007) Non-destructive testing techniques applied to the masonry and timber structures of the Crocifisso Church in Noto. In Proceedings of STREMAH 95. doi: https://doi.org/10.2495/STR070221

  40. Reynders E, Magalhaes F, De Roeck G, Cunha A (2009) Merging strategies for multi-setup operational modal analysis: application to the Luiz I steel arch bridge. Conference Proceedings of the Society for Experimental Mechanics Series

  41. Di Napoli B (2019) Modelling and safety assessment of the Santa Maria Maddalena Church, Ischia, Italy. Msc Thesis, Universidade do Minho, Portugal

  42. Di Napoli B, Ciocci MP, Celano T, Argiento LU, Casapulla C, Lourenço PB (2021) Seismic behaviour of a mixed iron-masonry church: Santa Maria Maddalena, Ischia. Proc Inst Civ Eng: Eng Comput Mechanic 174(2):114–129. https://doi.org/10.1680/jencm.20.00009

    Article  Google Scholar 

  43. DIANA FEA BV, “Diana User’s Manual, Release 10.3,” DIANA FEA BV. (2019). doi: https://doi.org/10.1080/15421400600788682

  44. Argiento LU, Celano T, Ceroni F, Casapulla C (2022) Modelling strategies for the in-plane behaviour of iron-framed masonry structures: parametric analysis on simple panels and a church façade. Int J Architect Heritage 16(7):1006–1031. https://doi.org/10.1080/15583058.2020.1858369

    Article  Google Scholar 

  45. Brussel MN (1998) Appraisal of existing iron and steel structures. The Steel Construction Institute, Ascot-Berkshire.

  46. Calderoni B (1996) Valutazione sperimentale delle caratteristiche meccaniche di muratura di tufo per modelli in scala intermedia. La meccanica delle murature tra teoria e progetto. Pitagora Editrice Bologna, Messina, pp 95–104

    Google Scholar 

  47. Calderoni B, Cecere G, Cordasco EA, Guerriero L, Lenza P, Manfredi G (2006) Costruzione e comportamento meccanico di macromodelli di murature in tufo postmedievali. Quale sicurezza per il patrimonio architettonico?, Mantova, pp.396–407

  48. Calderoni B, Cordasco EA, Guerriero L, Lenza P (2008) Prove a compressione di murature storiche napoletane. Atlante delle tecniche costruttive tradizionali. Arte Tipografica, Napoli, pp 289–300

    Google Scholar 

  49. Calderoni B, Cordasco EA, Guerriero L, Lenza P, Manfredi G (2009) Mechanical behaviour of post-medieval tuff masonry of the Naples area. J Int Masonry Soc 21(3):85–96

    Google Scholar 

  50. Di Napoli B, Ciocci MP, Celano T, Lourenço PB, Casapulla C (2021) Calibration of a FEM Model with Complex Geometry: the Case Study of Santa Maria Maddalena Church in Ischia, Italy. In Proceeding of the 12th International Conference on Structural Analysis of Historical Constructions (SAHC). Available online https://www.scipedia.com/public/Napoli_et_al_2021a (last accessed on September 11, 2022).

  51. Ciampoli M, Pinto PE (1995) Effects of Soil-Structure Interaction on inelastic seismic response on bridge piers. J Struct Eng 121(5):806–814

    Article  Google Scholar 

  52. Veletsos AS (1977) Dynamic behaviour of building-foundation systems. W.J. Hall, Structural and Geotechnical Mechanics, Prentice-Hall, New Jersey, pp 333–361

    Google Scholar 

  53. Ceroni F, Sica S, Pecce M, Garofano A. The Role of the Foundation Soil on the Dynamic Behaviour of Reinforced-Concrete and Masonry Buildings. In Proceedings of the 15th World Conference of Earthquake Engineering (WCEE), Lisbon, Portugal, 24–28 September 2012.

  54. Casapulla C, Celano T, Rainieri C, Fabbrocino G, Ceroni C (2021) On the dynamic performance of the Santa Maria Maddalena Church, Ischia Island (Italy): numerical and experimental comparative analysis. In Proceedings of the 8th International Workshop on Civil Structural Health Monitoring, pp. 699–723. doi: https://doi.org/10.1007/978-3-030-74258-4_45

  55. Ministero delle Infrastrutture e dei Trasporti. Istruzioni per l’applicazione dell’Aggiornamento delle ‘Norme Tecniche per le costruzioni’ di cui al decreto ministeriale 17 gennaio 2018. Gazz. Uffic. Rep. Ita. (2019).

  56. Brandonisio G, Lucibello G, Mele E, De Luca A (2013) Damage and performance evaluation of masonry churches in the 2009 L’Aquila earthquake. Eng Fail Anal 34:693–714. https://doi.org/10.1016/j.engfailanal.2013.01.021

    Article  Google Scholar 

  57. Betti M, Borghini A, Boschi S, Ciavattone A, Vignoli A (2018) Comparative seismic risk assessment of the Basilica of San Francesco in Arezzo (Italy). J Earthquake Eng 22(sup1):62–95. https://doi.org/10.1080/13632469.2017.1309602

    Article  Google Scholar 

Download references

Acknowledgements

The Authors gratefully acknowledge the financial support provided by the PRIN 2017 “SURMOUNT—Innovative Systems for the UpgRade of MasOnry structUres and Non sTructural elements” research project (n. 20173SJJF8) for the present research activities. Additional support from the national Reluis Project 2022-2023 and coordination of in-situ activities by the commission of the Campania Regional Directorate for Cultural Heritage (MiBACT) are also warmly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Rainieri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celano, T., Ceroni, F., Fabbrocino, G. et al. Thermographic investigations and dynamic identification tests for non-destructive structural assessment and enhanced FE modelling of a historical iron-strengthened masonry church. J Civil Struct Health Monit 13, 901–924 (2023). https://doi.org/10.1007/s13349-022-00645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-022-00645-6

Keywords

Navigation