Skip to main content

Advertisement

Log in

Dynamic monitoring system for utility-scale wind turbines: damage detection and fatigue assessment

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

Wind turbines are designed to last about 20 years. However, information regarding the actual structural condition of the wind turbine throughout this period is very limited or even null. This situation prevents the exploitation of the full potential of the support structure of the turbine, including the extension of its period of life. This paper presents an overview of a dynamic monitoring system developed to monitor the structural integrity of utility-scale wind turbines. This monitoring system, based on automated techniques of operational modal analysis, aims to deliver important information regarding the actual condition of the wind turbine: early detection of structural changes (i.e. damage) and evaluation of fatigue condition of the support structure. In this paper, a special focus is given to the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. The European Wind Energy Association (EWEA) (2016) Wind in power—2015 European statistics

  2. The European Wind Energy Association (EWEA) (2016) The European offshore wind industry—key trends and statistics 2015

  3. Hu W-H, Thöns S, Rohrmann RG, Said S, Rücker W (2015) Vibration-based structural health monitoring of a wind turbine system. Part I: resonance phenomenon. Eng Struct 89:260–272. doi:10.1016/j.engstruct.2014.12.034

    Article  Google Scholar 

  4. Devriendt C, Magalhães F, Weijtjens W, Sitter GD, Cunha Á, Guillaume P (2014) Structural health monitoring of offshore wind turbines using automated operational modal analysis. Struct Health Monit 13(6):644–659. doi:10.1177/1475921714556568

    Article  Google Scholar 

  5. Oliveira G, Magalhães F, Cunha Á, Caetano E (2016) Development and implementation of a continuous dynamic monitoring system in a wind turbine. J Civil Struct Health Monit 6:343. doi:10.1007/s13349-016-0182-7

    Article  Google Scholar 

  6. Iliopoulos A, Weijtjens W, Van Hemelrijck D, Devriendt C (2017) Fatigue assessment of offshore wind turbines on monopile foundations using multi-band modal expansion. Wind Energy 20(8):1463–1479

    Article  Google Scholar 

  7. Veljkovic M, Heistermann C, Husson W, Limam M, Feldmann M, Naumes J, Pak D, Faber T, M. Klose, Fruhner K-U, Krutschinna L, Baniotopoulos C, Lavasas I, Pontes A, Ribeiro E, Hadden M, Sousa R, Silva L, Rebelo C, Simoes R, Henriques J, Matos R, Nuutinen J, Kinnunen H (2012) High-strength tower in steel for wind turbines (Histwin). Luxembourg

  8. Magalhães F, Cunha Á (2011) Explaining operational modal analysis with data from an arch bridge. Mech Syst Signal Process 25:1431–1450

    Article  Google Scholar 

  9. Peeters B, Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 13(6):855–878

    Article  Google Scholar 

  10. Overschee P, Moor B (1996) Subspace identification for linear systems. Theory, implementation, applications. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  11. Peeters B, Van Der Auweraer H, Guillaume P, Leuridan J (2004) The PolyMAX frequency-domain method: a new standard for modal parameters estimation? Shock Vib 11:395–409

    Article  Google Scholar 

  12. Allemang RJ (2003) The modal assurance criterion—twenty years of use and abuse. Sound Vib. 37(8):14–23

    Google Scholar 

  13. Magalhães F, Cunha Á, Caetano E (2009) Online automatic identification of the modal parameters of a long span arch bridge. Mech Syst Signal Process 23(2):316–332

    Article  Google Scholar 

  14. Oliveira G (2016) Vibration-based structural health monitoring of wind turbines. PhD thesis. University of Porto, Faculty of Engineering. Porto, Portugal

  15. Johnson RA, Wichern DW (2002) Applied multivariate statistical analysis. Prentice Hall, New Jersey

    MATH  Google Scholar 

  16. Magalhães F, Cunha Á, Caetano E (2012) Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection. Mech Syst Signal Process 28:212–228

    Article  Google Scholar 

  17. Pelayo F, López-Aenlle M, Fernández-Canteli, A, Cantieni R (2011) Operational modal analysis of two wind turbines with foundation problems. In: Proceedings of 4th International Operational Modal Analysis Conference (IOMAC). Istanbul, Turkey

  18. Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW Reference Wind Turbine for Offshore System Development National Renewable Energy Laboratory

  19. Larsen T, Hansen A (2007) How 2 HAWC2, the user’s manual. Risø National Laboratory, Roskilde

    Google Scholar 

  20. HAWC2 web site (2016) HAWC2 model—NREL 5-MW Reference Wind Turbine. http://www.hawc2.dk

  21. European Committee for Standardization (CEN) (2005) EN 1993-1-9 Eurocode 3: Design of steel structures—Part 1–9: Fatigue

  22. Guideline GW, Lioyd G (2010) Guideline for the certification of wind turbines. Germanischer, Hamburg

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge: (1) all the financial support provided by the Portuguese Foundation for Science and Technology (FCT) to ViBest/FEUP in the framework of the Project Dynamic Behaviour Monitoring for Structural Safety Assessment/National Network of Geophysics (National Programme for Scientific Re-equipment) (2) the Ph.D. Scholarship (SFRH/BD/79328/2011) provided by FCT to the first author; (3) the support given by INEGI, the wind turbine manufacturer Senvion and the wind turbine owner Cavalum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, G., Magalhães, F., Cunha, Á. et al. Dynamic monitoring system for utility-scale wind turbines: damage detection and fatigue assessment. J Civil Struct Health Monit 7, 657–668 (2017). https://doi.org/10.1007/s13349-017-0250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-017-0250-7

Keywords

Navigation