Skip to main content
Log in

Noetherian operators, primary submodules and symbolic powers

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

We give an algebraic and self-contained proof of the existence of the so-called Noetherian operators for primary submodules over general classes of Noetherian commutative rings. The existence of Noetherian operators accounts to provide an equivalent description of primary submodules in terms of differential operators. As a consequence, we introduce a new notion of differential powers which coincides with symbolic powers in many interesting non-smooth settings, and so it could serve as a generalization of the Zariski–Nagata Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernšteĭn, I.N., Gelfand, I.M., Gel’fand, S.I.: Differential operators on a cubic cone. Uspehi Mat. Nauk 27(1(163)), 185–190 (1972)

    MathSciNet  Google Scholar 

  2. Björk, J.-E.: Rings of Differential Operators, North-Holland Mathematical Library, p. 21. North-Holland Publishing Co., Amsterdam (1979)

    Google Scholar 

  3. Bommer, R.: High order derivations and primary ideals to regular prime ideals. Arch. Math. 46(6), 511–521 (1986). https://doi.org/10.1007/BF01195019

    Article  MathSciNet  Google Scholar 

  4. Brenner, H., Jeffries, J.: Quantifying singularities with differential operators. Adv. Math. 358(89), 106843 (2019)

    Article  MathSciNet  Google Scholar 

  5. Brumfiel, G.: Differential operators and primary ideals. J. Algebra 51(2), 375–398 (1978)

    Article  MathSciNet  Google Scholar 

  6. Dao, H., De Stefani, A., Grifo, E., Huneke, C., Núñez Betancourt, L.: Symbolic powers of ideals. In: Araujo dos Santos, R.N., Menegon Neto, A., Mond, D., Saia, M.J., Snoussi, J. (eds.) Singularities and Foliations. Geometry, Topology and Applications. Springer Proceedings in Mathematics and Statistics, vol. 222, pp. 387–432. Springer, Cham (2018)

    Chapter  Google Scholar 

  7. De Stefani, A., Grifo, E., Jeffries, J.: A Zariski–Nagata theorem for smooth \({\mathbb{Z}}\)-algebras. J. Reine Angew. Math. (2018). https://doi.org/10.1515/crelle-2018-0012

    Article  Google Scholar 

  8. Ehrenpreis, L.: Fourier Analysis in Several Complex Variables, Pure and Applied Mathematics, vol. XVII. Wiley, New York (1970)

    Google Scholar 

  9. Eisenbud, David: Commutative Algebra with a View Towards Algebraic Geometry, Graduate Texts in Mathematics, vol. 150. Springer, Cham (1995)

    Google Scholar 

  10. Eisenbud, D., Hochster, M.: A Nullstellensatz with nilpotents and Zariski’s main lemma on holomorphic functions. J. Algebra 58(1), 157–161 (1979)

    Article  MathSciNet  Google Scholar 

  11. Gröbner, W.: La théorie des idéaux et la géométrie algébrique: Deuxième Colloque de Géométrie Algébrique, Liège, pp. 129–144. Georges Thone, Liège; Masson & Cie, Paris (1952)

  12. Gröbner, W.: Über eine neue idealtheoretische Grundlegung der algebraischen Geometrie. Math. Ann. 115(1), 333–358 (1938)

    Article  MathSciNet  Google Scholar 

  13. Gröbner, W.: Geometrie, Algebraische: \(2\). Arithmetische Theorie der Polynomringe. Bibliographisches Institut, Mannheim-Vienna-Zurich, Teil (1970)

    Google Scholar 

  14. Grothendieck, A.: Éléments de géométrie algébrique : IV. étude locale des schémas et des morphismes de schémas, Quatrième partie. Publ. Math. l’IHÉS 32, 5–361 (1967)

    Article  Google Scholar 

  15. Heyneman, R.G., Sweedler, M.E.: Affine Hopf algebras. I. J. Algebra 13, 192–241 (1969)

    Article  MathSciNet  Google Scholar 

  16. Hörmander, L.: An Introduction to Complex Analysis in Several Variables, Third, North-Holland Mathematical Library, p. 7. North-Holland Publishing Co., Amsterdam (1990)

    Google Scholar 

  17. Marinari, M.G., Möller, H.M., Mora, T.: On multiplicities in polynomial system solving. Trans. Am. Math. Soc. 348(8), 3283–3321 (1996)

    Article  MathSciNet  Google Scholar 

  18. Matsumura, H.: Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, vol. 8, 1st edn. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  19. Mourrain, B.: Isolated Points, Duality and Residues. Algorithms Algebra (Eindhoven, 1996) 117(118), 469–493 (1997)

    MathSciNet  Google Scholar 

  20. Nagata, M.: Local Rings, Interscience Tracts in Pure and Applied Mathematics, vol. 13. Wiley, New York (1962)

    Google Scholar 

  21. Ulrich, O.: The construction of Noetherian operators. J. Algebra 222(2), 595–620 (1999)

    Article  MathSciNet  Google Scholar 

  22. Palamodov, V.P.: Linear Differential Operators with Constant Coefficients, Translated from the Russian by A. A. Brown. Die Grundlehren der mathematischen Wissenschaften, Band 168, Springer, New York (1970)

  23. Sharp, R.Y.: The dimension of the tensor product of two field extensions. Bull. Lond. Math. Soc. 9(1), 42–48 (1977)

    Article  MathSciNet  Google Scholar 

  24. Smith, K.E., Van den Bergh, M.: Simplicity of rings of differential operators in prime characteristic. Proc. Lond. Math. Soc. (3) 75(1), 32–62 (1997)

    Article  MathSciNet  Google Scholar 

  25. Sturmfels, B.: Solving systems of polynomial equations. In: CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, p. 97. By the American Mathematical Society, Providence (2002)

  26. van der Waerden, B.L.: Modern Algebra, vol. II. Frederick Ungar Publishing Co., New York (1949)

    Google Scholar 

  27. Zariski, Oscar: A fundamental lemma from the theory of holomorphic functions on an algebraic variety. Ann. Mat. Pura Appl. 4(29), 187–198 (1949)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Bernd Sturmfels for suggesting the initial problem that led to the preparation of this paper, for many helpful discussions, and for his contagious enthusiasm. The author thanks Łukasz Grabowski and Viktor Levandovskyy for useful conversations. The author thanks Greg Brumfiel for a helpful correspondence. The author is grateful to the referee for valuable comments and suggestions for the improvement of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yairon Cid-Ruiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cid-Ruiz, Y. Noetherian operators, primary submodules and symbolic powers. Collect. Math. 72, 175–202 (2021). https://doi.org/10.1007/s13348-020-00285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-020-00285-3

Keywords

Mathematics Subject Classification

Navigation