Skip to main content
Log in

Locally administered nanosuspension increases delivery of estradiol for the treatment of vaginal atrophy in mice

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Vaginal atrophy affects up to 57% of post-menopausal women, with symptoms ranging from vaginal burning to dysuria. Estradiol hormone replacement therapy may be prescribed to alleviate these symptoms, though many vaginal products have drawbacks including increased discharge and local tissue toxicity due to their hypertonic nature. Here, we describe the development and characterization of a Pluronic F127-coated estradiol nanosuspension (NS) formulation for improved vaginal estradiol delivery. We compare the pharmacokinetics to the clinical comparator vaginal cream (Estrace) and demonstrate increased delivery of estradiol to the vaginal tissue. We utilized ovariectomized (OVX) mice as a murine model of post-menopausal vaginal atrophy and demonstrated equivalent efficacy in vaginal re-epithelialization when dosed with either the estradiol NS or Estrace cream. Further, we demonstrate compatibility of the estradiol NS with vaginal bacteria in vitro. We demonstrate that a Pluronic F127-coated estradiol NS may be a viable option for the treatment of post-menopausal vaginal atrophy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mac Bride MB, Rhodes DJ, Shuster LT. Vulvovaginal atrophy. Mayo Clin Proc. 2010;85(1):87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cagnacci A, et al. Vaginal atrophy across the menopausal age: results from the ANGEL study. Climacteric. 2019;22(1):85–9.

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein I, et al. Multidisciplinary overview of vaginal atrophy and associated genitourinary symptoms in postmenopausal women. Sex Med. 2013;1(2):44–53.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jung C, Brubaker L. The etiology and management of recurrent urinary tract infections in postmenopausal women. Climacteric. 2019;22(3):242–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bleibel B, Nguyen H. Vaginal atrophy, in StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Hao Nguyen declares no relevant financial relationships with ineligible companies. 2023.

  6. Palacios S. Ospemifene for vulvar and vaginal atrophy: an overview. Drugs Context, 2020;9.

  7. Benini V et al. New innovations for the treatment of Vulvovaginal Atrophy: an Up-to-date review. Med (Kaunas), 2022;58(6).

  8. Zierden HC, et al. Avoiding a Sticky Situation: bypassing the mucus barrier for Improved Local Drug Delivery. Trends Mol Med. 2021;27(5):436–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lai SK, et al. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc Natl Acad Sci U S A. 2010;107(2):598–603.

    Article  CAS  PubMed  Google Scholar 

  10. Hoang T, et al. Development of a mucoinert progesterone nanosuspension for safer and more effective prevention of preterm birth. J Control Release. 2019;295:74–86.

    Article  CAS  PubMed  Google Scholar 

  11. Yu T, et al. Mucus-penetrating nanosuspensions for enhanced delivery of poorly soluble drugs to Mucosal surfaces. Adv Healthc Mater. 2016;5(21):2745–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ensign LM, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138):138ra79.

    Article  PubMed  Google Scholar 

  13. Yang M, et al. Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth. Adv Healthc Mater. 2014;3(7):1044–52.

    Article  CAS  PubMed  Google Scholar 

  14. Zierden HC et al. Enhanced drug delivery to the reproductive tract using nanomedicine reveals therapeutic options for prevention of preterm birth. Sci Transl Med, 2021;13(576).

  15. Ensign LM, et al. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake. Biomaterials. 2013;34(28):6922–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clinic M. Drugs and Supplements. Estradiol (Vaginal Route) 2023.

  17. Dezzutti CS, et al. Is wetter better? An evaluation of over-the-counter personal lubricants for safety and anti-HIV-1 activity. PLoS ONE. 2012;7(11):e48328.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Strom JO et al. Ovariectomy and 17beta-estradiol replacement in rats and mice: a visual demonstration. J Vis Exp, 2012(64): p. e4013.

  19. Illston JD, et al. Low-dose 17-beta-estradiol cream for vaginal atrophy in a cohort without prolapse: serum levels and vaginal response including tissue biomarkers associated with tissue remodeling. Maturitas. 2015;81(4):475–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cano A, et al. The therapeutic effect of a new ultra low concentration estriol gel formulation (0.005% estriol vaginal gel) on symptoms and signs of postmenopausal vaginal atrophy: results from a pivotal phase III study. Menopause. 2012;19(10):1130–9.

    Article  PubMed  Google Scholar 

  21. Zierden HC, et al. Characterization of an adapted murine model of intrauterine inflammation-Induced Preterm Birth. Am J Pathol. 2020;190(2):295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ensign LM, Cone R, Hanes J. Nanoparticle-based drug delivery to the vagina: a review. J Control Release. 2014;190:500–14.

    Article  CAS  PubMed  Google Scholar 

  23. Vermani K, Garg S. The scope and potential of vaginal drug delivery. Pharm Sci Technol Today. 2000;3(10):359–64.

    Article  CAS  PubMed  Google Scholar 

  24. Marichal T, Mesnil C, Bureau F. Homeostatic eosinophils: characteristics and functions. Front Med (Lausanne). 2017;4:101.

    Article  PubMed  Google Scholar 

  25. Perez MC, et al. Role of eosinophils in uterine responses to estrogen. Biol Reprod. 1996;54(1):249–54.

    Article  CAS  PubMed  Google Scholar 

  26. Araujo JMD, et al. CCR3 antagonist impairs estradiol-induced eosinophil migration to the uterus in ovariectomized mice. Braz J Med Biol Res. 2020;53(1):e8659.

    Article  CAS  PubMed  Google Scholar 

  27. Griffith JS, et al. Evidence for the genetic control of estradiol-regulated responses. Implications for variation in normal and pathological hormone-dependent phenotypes. Am J Pathol. 1997;150(6):2223–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Aging NIo., editor. What is menopause? 2021.

  29. Burger HG, et al. Hormonal changes in the menopause transition. Recent Prog Horm Res. 2002;57:257–75.

    Article  CAS  PubMed  Google Scholar 

  30. Becker RC. Cardiology patient page. Heart attack and stroke prevention in women. Circulation. 2005;112(17):e273–5.

    Article  PubMed  Google Scholar 

  31. Crandall CJ, et al. Associations of menopausal vasomotor symptoms with fracture incidence. J Clin Endocrinol Metab. 2015;100(2):524–34.

    Article  CAS  PubMed  Google Scholar 

  32. Jackson LW, Cromer BA, Panneerselvamm A. Association between bone turnover, micronutrient intake, and blood lead levels in pre- and postmenopausal women, NHANES 1999–2002. Environ Health Perspect. 2010;118(11):1590–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shifren JL, Gass ML. N.R.f.C.C.o.M.W.W. Group, the North American Menopause Society recommendations for clinical care of midlife women. Menopause. 2014;21(10):1038–62.

    Article  PubMed  Google Scholar 

  34. Hu FB, et al. Age at natural menopause and risk of cardiovascular disease. Arch Intern Med. 1999;159(10):1061–6.

    Article  CAS  PubMed  Google Scholar 

  35. Shapiro RL, et al. In vitro and ex vivo models for evaluating vaginal drug delivery systems. Adv Drug Deliv Rev. 2022;191:114543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DailyMed NLoM. Label: Estrace - estradiol cream. 2022.

  37. Moench TR, et al. Microbicide excipients can greatly increase susceptibility to genital herpes transmission in the mouse. BMC Infect Dis. 2010;10:331.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kroll R, et al. A randomized, multicenter, double-blind study to evaluate the safety and efficacy of estradiol vaginal cream 0.003% in postmenopausal women with dyspareunia as the most bothersome symptom. Menopause. 2018;25(2):133–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dickerson J, et al. Efficacy of estradiol vaginal cream in postmenopausal women. Clin Pharmacol Ther. 1979;26(4):502–7.

    Article  CAS  PubMed  Google Scholar 

  40. Weisberg E, et al. Endometrial and vaginal effects of low-dose estradiol delivered by vaginal ring or vaginal tablet. Climacteric. 2005;8(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  41. Nash HA, et al. Estradiol delivery by vaginal rings: potential for hormone replacement therapy. Maturitas. 1997;26(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  42. Sarkar NN. Low-dose intravaginal estradiol delivery using a silastic vaginal ring for estrogen replacement therapy in postmenopausal women: a review. Eur J Contracept Reprod Health Care. 2003;8(4):217–24.

    Article  CAS  PubMed  Google Scholar 

  43. Bachmann GA. The clinical platform for the 17beta-estradiol vaginal releasing ring. Am J Obstet Gynecol. 1998;178(5):S257–60.

    Article  CAS  Google Scholar 

  44. Rioux JE, et al. 17beta-estradiol vaginal tablet versus conjugated equine estrogen vaginal cream to relieve menopausal atrophic vaginitis. Menopause. 2000;7(3):156–61.

    Article  CAS  PubMed  Google Scholar 

  45. LE Nachtigall. Clinical trial of the estradiol vaginal ring in the U.S. Maturitas. 1995;22(Suppl):S43–7.

    Article  CAS  PubMed  Google Scholar 

  46. Eugster-Hausmann M, Waitzinger J, Lehnick D. Minimized estradiol absorption with ultra-low-dose 10 microg 17beta-estradiol vaginal tablets. Climacteric. 2010;13(3):219–27.

    Article  CAS  PubMed  Google Scholar 

  47. Bachmann G, et al. Efficacy of low-dose estradiol vaginal tablets in the treatment of atrophic vaginitis: a randomized controlled trial. Obstet Gynecol. 2008;111(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  48. Fernandes T, et al. Vaginal multipurpose prevention technologies: promising approaches for enhancing women’s sexual and reproductive health. Expert Opin Drug Deliv. 2020;17(3):379–93.

    Article  CAS  PubMed  Google Scholar 

  49. Abidin IZ, et al. A systematic review of mucoadhesive vaginal tablet testing. Drug Target Insights. 2023;17:5–30.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Boyd P, et al. The ins and outs of drug-releasing vaginal rings: a literature review of expulsions and removals. Expert Opin Drug Deliv. 2020;17(11):1519–40.

    Article  CAS  PubMed  Google Scholar 

  51. Brache V, Faundes A. Contraceptive vaginal rings: a review. Contraception. 2010;82(5):418–27.

    Article  CAS  PubMed  Google Scholar 

  52. Palmeira-de-Oliveira R, et al. Women’s preferences and acceptance for different drug delivery routes and products. Adv Drug Deliv Rev. 2022;182:114133.

    Article  CAS  PubMed  Google Scholar 

  53. Carson L et al. The vaginal microbiota, bacterial biofilms and Polymeric Drug-releasing Vaginal rings. Pharmaceutics, 2021;13(5).

  54. Abou-Taleb HA et al. Chitosan/Solid-Lipid Nanoparticles Hybrid Gels for vaginal delivery of Estradiol for Management of Vaginal menopausal symptoms. Pharmaceuticals (Basel), 2023;16(9).

  55. Machado RM, et al. The vaginal sheet: an innovative form of vaginal film for the treatment of vaginal infections. Drug Dev Ind Pharm. 2020;46(1):135–45.

    Article  CAS  PubMed  Google Scholar 

  56. Li WZ, et al. Post-expansile hydrogel foam aerosol of PG-liposomes: a novel delivery system for vaginal drug delivery applications. Eur J Pharm Sci. 2012;47(1):162–9.

    Article  CAS  PubMed  Google Scholar 

  57. Machado RM, et al. Vaginal films for drug delivery. J Pharm Sci. 2013;102(7):2069–81.

    Article  CAS  PubMed  Google Scholar 

  58. Notario-Perez F, et al. Design, fabrication and characterisation of drug-loaded vaginal films: state-of-the-art. J Control Release. 2020;327:477–99.

    Article  CAS  PubMed  Google Scholar 

  59. Tugcu-Demiroz F, et al. Electrospun metronidazole-loaded nanofibers for vaginal drug delivery. Drug Dev Ind Pharm. 2020;46(6):1015–25.

    Article  CAS  PubMed  Google Scholar 

  60. Silva JA, et al. Immobilization of vaginal Lactobacillus in polymeric nanofibers for its incorporation in vaginal probiotic products. Eur J Pharm Sci. 2021;156:105563.

    Article  CAS  PubMed  Google Scholar 

  61. Minooei F, et al. Mesh and layered electrospun fiber architectures as vehicles for Lactobacillus acidophilus and Lactobacillus crispatus intended for vaginal delivery. Biomater Adv. 2023;154:213614.

    Article  CAS  PubMed  Google Scholar 

  62. Minooei F, et al. Rapid-dissolving electrospun nanofibers for intra-vaginal antibiotic or probiotic delivery. Eur J Pharm Biopharm. 2023;190:81–93.

    Article  CAS  PubMed  Google Scholar 

  63. Mahmoud MY, et al. Lactobacillus crispatus-loaded electrospun fibers yield viable and metabolically active bacteria that kill Gardnerella in vitro. Eur J Pharm Biopharm. 2023;187:68–75.

    Article  CAS  PubMed  Google Scholar 

  64. Kyser AJ, et al. Fabrication and characterization of bioprints with Lactobacillus crispatus for vaginal application. J Control Release. 2023;357:545–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Corduas F, et al. Melt-extrusion 3D printing of resorbable levofloxacin-loaded meshes: emerging strategy for urogynaecological applications. Mater Sci Eng C Mater Biol Appl. 2021;131:112523.

    Article  CAS  PubMed  Google Scholar 

  66. Cazorla-Luna R, et al. Recent advances in electrospun nanofiber vaginal formulations for women’s sexual and reproductive health. Int J Pharm. 2021;607:121040.

    Article  CAS  PubMed  Google Scholar 

  67. Key T, et al. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst. 2002;94(8):606–16.

    Article  CAS  PubMed  Google Scholar 

  68. Endogenous H, et al. Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer. 2011;105(5):709–22.

    Article  Google Scholar 

  69. LLC PUC. ESTRING- estradiol system Physician’s Leaflet. 2022.

  70. Byers SL, et al. Mouse estrous cycle identification tool and images. PLoS ONE. 2012;7(4):e35538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hickey DK, Fahey JV, Wira CR. Mouse estrous cycle regulation of vaginal versus uterine cytokines, chemokines, alpha-/beta-defensins and TLRs. Innate Immun. 2013;19(2):121–31.

    Article  PubMed  Google Scholar 

  72. Kaushic C, et al. Effects of estradiol and progesterone on susceptibility and early immune responses to Chlamydia trachomatis infection in the female reproductive tract. Infect Immun. 2000;68(7):4207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gillgrass AE, et al. Estradiol regulates susceptibility following primary exposure to genital herpes simplex virus type 2, while progesterone induces inflammation. J Virol. 2005;79(5):3107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cone RA, et al. Vaginal microbicides: detecting toxicities in vivo that paradoxically increase pathogen transmission. BMC Infect Dis. 2006;6:90.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Meister MR, et al. Vaginal estrogen therapy is Associated with decreased inflammatory response in Postmenopausal Women with recurrent urinary tract infections. Female Pelvic Med Reconstr Surg. 2021;27(1):e39–44.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Robinson DP, et al. Elevated 17beta-estradiol protects females from influenza a virus pathogenesis by suppressing inflammatory responses. PLoS Pathog. 2011;7(7):e1002149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vrbanac A, et al. The murine vaginal microbiota and its perturbation by the human pathogen group B Streptococcus. BMC Microbiol. 2018;18(1):197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Miller EA et al. Lactobacilli Dominance and Vaginal pH: Why Is the Human Vaginal Microbiome Unique? Front Microbiol, 2016. 7: p. 1936.

  79. Greenberg JM, et al. Microbiota of the pregnant mouse: characterization of the bacterial communities in the oral cavity, lung, intestine, and Vagina through Culture and DNA sequencing. Microbiol Spectr. 2022;10(4):e0128622.

    Article  PubMed  Google Scholar 

  80. Barfod KK, et al. The murine lung microbiome in relation to the intestinal and vaginal bacterial communities. BMC Microbiol. 2013;13:303.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Heiss HMCGS. Changes in vaginal bacterial Flora during the Oestrous cycle of the mouse. Microb Ecol Health Disease, 1991. 4, 1991(4).

  82. Miao J, Willems HME, Peters BM. Exogenous Reproductive hormones nor Candida albicans colonization alter the Near Neutral Mouse Vaginal pH. Infect Immun, 2021;89(2).

  83. Park MG, Cho S, Oh MM. Menopausal changes in the Microbiome-A Review focused on the Genitourinary Microbiome. Diagnostics (Basel), 2023;13(6).

  84. Muhleisen AL, Herbst-Kralovetz MM. Menopause and the vaginal microbiome. Maturitas. 2016;91:42–50.

    Article  PubMed  Google Scholar 

  85. Spiegel CA. Bacterial vaginosis. Clin Microbiol Rev. 1991;4(4):485–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hoang T, et al. The cervicovaginal mucus barrier to HIV-1 is diminished in bacterial vaginosis. PLoS Pathog. 2020;16(1):e1008236.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nelson DB, et al. First trimester levels of BV-Associated Bacteria and risk of Miscarriage among women early in pregnancy. Matern Child Health J. 2015;19(12):2682–7.

    Article  PubMed  Google Scholar 

  88. Dingens AS, et al. Bacterial vaginosis and adverse outcomes among full-term infants: a cohort study. BMC Pregnancy Childbirth. 2016;16(1):278.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kelli L, Boyd AM, Mara H, Rendi RL, Garcia, Katherine N, Gibson-Corley. Female Reproductive System. In: Piper SMD, Treuting M, Montine KS, editors. Comparative anatomy and histology (2nd ed): a mouse, rat, and human Atlas. Editor: Elsevier; 2018. pp. 303–34.

    Google Scholar 

  90. Mara H, Rendi AM, Rochelle L, Garcia KL, Boyd. Female Reproductive System. In: Piper SMD, Treuting M, editors. Comparative anatomy and histology: a mouse and human Atlas. Editor: Elsevier Inc; 2012. pp. 253–84.

    Google Scholar 

  91. Cunha GR, et al. Reproductive tract biology: of mice and men. Differentiation. 2019;110:49–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the JHMI animal husbandry staff and the JHMI Reference Histology lab for their support. The following reagent was obtained through BEI Resources, NIAID, NIH as part of the Human Microbiome Project: Gardnerella vaginalis, Strain JCP8481B, HM-1118, and Lactobacillus crispatus, Strain EX533959VC06, HM-422.

Funding

The project described was supported by the Analytical Pharmacology Core of the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins [NIH grants P30CA006973 and UL1TR003098, and the Shared Instrument Grant S10RR026824]. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of the NCATS or NIH. This work was supported by NIH grants R01HD103124 and R01HD108905. Rachel Shapiro and Hannah Zierden were supported by an NSF GRFP Fellowship, and Kevin DeLong was supported by a Hartwell Foundation Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work described in this paper. Rachel Shapiro, Titania Bethiana, Hannah Zierden, Kevin DeLong, and Laura Ensign contributed to the design of experiments. Hannah Zierden and Rachel Shapiro contributed to the design and development of the NS formulation. Nicole Anders developed the analytical LC-MS/MS method and analyzed samples for estradiol levels. Rachel Shapiro, Titania Bethiana, Hannah Zierden, Davell Carter, Jairo Ortiz, Eliza Duggan, and Kevin DeLong conducted experiments. Tricia Numan analyzed and reported on tissue histology slides. Rachel Shapiro, Titania Bethiana, and Laura Ensign analyzed and interpreted the in vivo mouse and bacteria data. Rachel Shapiro and Laura Ensign wrote the manuscript. Kevin Delong and Laura Ensign provided subject matter expertise and guidance for this project. All authors approve the final version of this manuscript.

Corresponding authors

Correspondence to Hannah C. Zierden or Laura M. Ensign.

Ethics declarations

Ethics approval

Johns Hopkins program of Animal care and Use is accredited by AAALAC international. Animal care, and procedures follow the Guide for the Care and Use of Laboratory Animals 8th ed. All experimental protocols involving mice were approved by the Johns Hopkins Animal Care and Use Committee. Unless otherwise specified, CD-1 mice were ordered from Charles River Laboratories at 6–8 weeks and were housed in a satellite housing facility in cages of 5 mice.

Consent to participate

No human materials or subjects were used in this study.

Competing interests

The mucus-penetrating particle technology is licensed and in clinical development for ocular indications by Kala Pharmaceuticals. Under a licensing agreement between Kala Pharmaceuticals and the Johns Hopkins University, Laura M. Ensign and the University are entitled to royalty distributions related to the technology. These arrangements have been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies. All other authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, R.L., Bethiana, T., Carter, D.M. et al. Locally administered nanosuspension increases delivery of estradiol for the treatment of vaginal atrophy in mice. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01618-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01618-6

Keywords

Navigation