Skip to main content

Advertisement

Log in

Quality by design approach-based fabrication and evaluation of self-nanoemulsifying drug delivery system for improved delivery of venetoclax

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Breast cancer is reported as one of the most prevalent non-cutaneous malignancies in women. Venetoclax (VEN) is an approved BCl-2 inhibitor for the treatment of chronic myeloid leukemia with very limited oral bioavailability and exhibits an enormous impact on breast cancer. In the current investigation, venetoclax-loaded self-nanoemulsifying drug delivery systems (VEN-SNEDDS) were designed and fabricated to improve the aqueous solubility, permeability, and anticancer efficacy of VEN. Various surface-active parameters of the reconstituted SNEDDS were determined to scrutinize the performance of the selected surfactant mixture. Central composite design (CCD) was used to optimize the VEN-SNEDDS. The globule size of reconstituted VEN-SNEDDS was 71.3 ± 2.8 nm with a polydispersity index of 0.113 ± 0.01. VEN-SNEDDS displayed approximately 3–4 fold, 6–7 fold, and 5–6 fold reduced IC50 as compared to free VEN in MDA-MB-231, MCF-7, and T47 D cells, respectively. VEN-SNEDDS showed greater cellular uptake, apoptosis, reactive oxygen species generation, and higher BAX/BCL2 ratio with decreased caspase 3 and 8 and BCL-2 levels in the MDA-MB-231 cells compared to pure VEN. VEN-SNEDDS exhibited approximately fivefold enhancement in Cmax and an improved oral bioavailability compared to VEN suspension in in vivo pharmacokinetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request.

Abbreviations

AO/EB:

Acridine orange/ethidium bromide

ATCC:

American Type Culture Collection

BCL-2:

B-cell lymphoma 2

BCS:

Biopharmaceutical classification system

CCD:

Central composite design

CLL:

Chronic lymphocytic leukemia

DCFDA:

2′,7′-Dichlorofluorescein diacetate

DMSO:

Dimethyl sulfoxide

DoE:

Design of experiments

DAPI:

4′,6-Diamidino-2-phenylindole

EE:

Emulsification efficiency

EPR:

Enhanced permeability retention

FBS:

Fetal bovine serum

GIT:

Gastrointestinal tract

HCl:

Hydrochloric acid

HLB:

Hydrophilic-lipophilic balance

IC50 :

Inhibitory concentration

IFT:

Interfacial tension

mN/m:

Millinewtons/meter

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NCCS:

National Centre for Cell Sciences

o/w:

Oil in water

PARP:

Poly (ADP-ribose) polymerase

P-gp:

P glycoprotein

PVDF:

Polyvinylidene fluoride

ROS:

Reactive oxygen species

RP-HPLC:

Reverse-phase high-performance liquid chromatography

RPMI:

Roswell Park Memorial Institute

SNEDDS:

Self-nanoemulsifying drug delivery system

SFT:

Surface tension

S mix :

Surfactant mixture

TEM:

Transmission electron microscopy

VEN:

Venetoclax

VEN-SNEDDS:

Venetoclax-loaded SNEDDS

References

  1. Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S, Soerjomataram I. Current and future burden of breast cancer: global statistics for 2020 and 2040. The Breast. 2022;66:15–23.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25(1):65–80. https://doi.org/10.1038/cdd.2017.186.

    Article  CAS  PubMed  Google Scholar 

  3. García-Aranda M, Pérez-Ruiz E, Redondo M. Bcl-2 inhibition to overcome resistance to chemo-and immunotherapy. Int J Mol Sci. 2018;19(12):3950. https://doi.org/10.3390/ijms19123950.

  4. Kala SG, Chinni S. Development and characterization of venetoclax nanocrystals for oral bioavailability enhancement. AAPS PharmSciTech. 2021;22(3):1–11. https://doi.org/10.1208/s12249-021-01968-1.

  5. Chary PS, Rajana N, Bhavana V, Singh PK, Srivastava S, Madan J, Singh SB, Mehra NK. Nanotechnology: advanced drug-targeting concepts, fundamentals, and strategies. In Multifunctional Nanocarriers. 2022;1–24. https://doi.org/10.1016/B978-0-323-85041-4.00022-6.

  6. Rajana N, Mounika A, Chary PS, Bhavana V, Urati A, Khatri D, Singh SB, Meha NK. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J Control Release. 2022;352:1024–47. https://doi.org/10.1016/j.jconrel.2022.11.009.

    Article  CAS  PubMed  Google Scholar 

  7. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–182. https://doi.org/10.1016/j.biopha.2004.02.001.

  8. Al-Mohizea AM, Zawaneh F, Alam MA, Al-Jenoobi FI, El-Maghaby GM. Effect of pharmaceutical excipients on the permeability of P-glycoprotein substrate. J Drug Deliv Sci Technol 2014;24(5):491–5. https://doi.org/10.1016/S1773-2247(14)50093-7.

    Article  CAS  Google Scholar 

  9. Koehl NJ, Henze LJ, Kuentz M, Holm R, Griffin BT. Supersaturated lipid-based formulations to enhance the oral bioavailability of venetoclax. Pharmaceutics. 2020;12(6):564. https://doi.org/10.3390/pharmaceutics12060564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koehl NJ, Henze LJ, Holm R, Kuentz M, Keating JJ, De Vijlder T, Marx A, Griffin BT. Lipophilic salts and lipid-based formulations for bridging the food effect gap of venetoclax. J Pharm Sci. 2022;111(1):164–74. https://doi.org/10.1016/j.xphs.2021.09.008.

    Article  CAS  PubMed  Google Scholar 

  11. Oliveira N, Cádiz-Gurrea MD, Silva AM, Macedo C, Rodrigues F, Costa P. Development and optimization of a topical formulation with Castanea sativa shells extract based on the concept “quality by design”. Sustainability. 2021;14(1):129.https://doi.org/10.3390/su14010129.

  12. Dai Q, Zhang P, Jin Y, Tang M, Shen M, Xu S, Huang S, Chen Y. Using self-nanoemulsifying system to improve oral bioavailability of a pediatric antiepileptic agent stiripentol: formulation and pharmacokinetics studies. AAPS PharmSciTech. 2020;21:1–2. https://doi.org/10.1208/s12249-020-01730-z.

    Article  CAS  Google Scholar 

  13. Bhavana V, Chary PS, Rajana N, Devabattula G, Sau S, Godugu C, Kalia NP, Singh SB, Mehra NK. Multimodal lemongrass oil based topical nanoemulgel ingrained with ferulic acid for wound healing activity. J Mol Liq. 2023;389:122870. https://doi.org/10.1016/j.molliq.2023.122870.

    Article  CAS  Google Scholar 

  14. Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomena. John Wiley & Sons 4th edition New Jersey. 2012.

  15. Sharma R, Mahajan S, Mahajan RK. Surface adsorption and mixed micelle formation of surface active ionic liquid in cationic surfactants: conductivity, surface tension, fluorescence and NMR studies. Colloids Surf A Physicochem Eng. 2013;427:62–75. https://doi.org/10.1016/j.colsurfa.2013.03.023.

  16. Fisicaro E, Barbieri M, Pelizzetti E, Savarino P. Temperature dependence of enthalpic properties of aqueous micellar solution of some N-alkylnicotinamide chloride surfactants. J Chem Soc Faraday Trans. 1991;87(18):2983–7. https://doi.org/10.1016/j.jddst.2018.06.021.

    Article  CAS  Google Scholar 

  17. Kassem AA, Mohsen AM, Ahmed RS, Essam TM. Self-nanoemulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: design, optimization, in vitro and in vivo evaluation. J Mol Liq. 2016;218:219–32. https://doi.org/10.1016/j.molliq.2016.02.081.

    Article  CAS  Google Scholar 

  18. Mehta RN, More U, Malek N, Chakraborty M, Parikh PA. Study of stability and thermodynamic properties of water-in-diesel nanoemulsion fuels with nano-Al additive. Appl Nanosci. 2015;5(8):891–900. https://doi.org/10.1016/j.apenergy.

    Article  CAS  Google Scholar 

  19. Panigrahi KC, Jena J, Jena GK, Patra CN, Rao MB. QBD-based systematic development of Bosentan SNEDDS: formulation, characterization and pharmacokinetic assessment. J Drug Deliv Sci Technol. 2018;1(47):31–42. https://doi.org/10.1016/j.jddst.2018.06.021.

    Article  CAS  Google Scholar 

  20. Bhagwat DA, Swami PA, Nadaf SJ, Choudhari PB, Kumbar VM, More HN, Killedar SG, Kawtikwar PS. Capsaicin loaded solid SNEDDS for enhanced bioavailability and anti-cancer activity: in-vitro, in-silico, and in-vivo characterization. J Pharm Sci. 2021;110(1):280–91. https://doi.org/10.1016/j.xphs.2020.10.020.

    Article  CAS  PubMed  Google Scholar 

  21. Zewail MB, El-Gizawy SA, Osman MA, Haggag YA. Preparation and in vitro characterization of a novel self-nano emulsifying drug delivery system for a fixed-dose combination of candesartan cilexetil and hydrochlorothiazide. J Drug Deliv Sci Technol. 2021;61:102320. https://doi.org/10.1016/j.jddst.2021.102320.

    Article  CAS  Google Scholar 

  22. Kanwal T, Kawish M, Maharjan R, Ghaffar I, Ali HS, Imran M, Perveen S, Saifullah S, Simjee SU, Shah MR. Design and development of permeation enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for ceftriaxone sodium improved oral pharmacokinetics. J Mol Liq. 2019;289:111098. https://doi.org/10.1016/j.molliq.2019.111098.

    Article  CAS  Google Scholar 

  23. Kallakunta VR, Bandari S, Jukanti R, Veerareddy PR. Oral self emulsifying powder of lercanidipine hydrochloride: formulation and evaluation. Powder Technol. 2012;221:375–82. https://doi.org/10.1016/j.powtec.2012.01.032.

    Article  CAS  Google Scholar 

  24. Chaudhuri A, Shivastava N, Kumar S, Singh AK, Ali J, Baboota S. Designing and development of omega-3 fatty acid based self-nanoemulsifying drug delivery system (SNEDDS) of docetaxel with enhanced biopharmaceutical attributes for management of breast cancer. J Drug Deliv Sci Technol. 2022;68:103117. https://doi.org/10.1016/j.jddst.2022.103117.

    Article  CAS  Google Scholar 

  25. Kaviarasi B, Rajana N, Pooja YS, Rajalakshmi AN, Singh SB, Mehra NK. Investigating the effectiveness of difluprednate-loaded core-shell lipid-polymeric hybrid nanoparticles for ocular delivery. Int J Pharm. 2023;640:123006. https://doi.org/10.1016/j.ijpharm.2023.123006.

    Article  CAS  PubMed  Google Scholar 

  26. Guru SK, Pathania AS, Kumar S, Ramesh D, Kumar M, Rana S, Kumar A, Malik F, Sharma PR, Chandan BK, Jaglan S. Secalonic acid-D represses HIF1α/VEGF-mediated angiogenesis by regulating the Akt/mTOR/p70S6K signaling cascade SAD, a mycotoxin represses VEGF-arbitrated angiogenesis. Can Res. 2015;75(14):2886–96. https://doi.org/10.1158/0008-5472.CAN-14-2312.

    Article  CAS  Google Scholar 

  27. Ansari MJ, Alnakhli M, Al-Otaibi T, Al Meanazel O, Anwer MK, Ahmed MM, Alshahani SM, Alshetaili A, Aldawsari MF, Alalaiwe AS, Alanazi AZ. Formulation and evaluation of self-nanoemulsifying drug delivery system of brigatinib: improvement of solubility, in vitro release, ex-vivo permeation and anti-cancer activity. J Drug Deliv Sci Technol. 2021;61:102204. https://doi.org/10.1016/j.jddst.2020.102204.

    Article  CAS  Google Scholar 

  28. Parmar N, Singla N, Amin S, Kohli K. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self-nanoemulsifying drug delivery system. Colloids Surf, B. 2011;86(2):327–38. https://doi.org/10.1016/j.colsurfb.2011.04.016.

    Article  CAS  Google Scholar 

  29. Stevens N, Allred K. Antidiabetic potential of volatile cinnamon oil: a review and exploration of mechanisms using in silico molecular docking simulations. Molecules. 2022;27(3):853. https://doi.org/10.3390/molecules27030853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Elnaggar YS, El-Massik MA, Abdallah OY. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: design and optimization. Int J Pharm. 2009;380(1):133–141. https://doi.org/10.1016/j.ijpharm.2009.07.015.

  31. Zeng L, Xin X, Zhang Y. Development and characterization of promising Cremophor EL-stabilized o/w nanoemulsions containing short-chain alcohols as a cosurfactant. RSC Adv. 2017;7(32):19815–27. https://doi.org/10.1039/C6RA27096D.

    Article  CAS  Google Scholar 

  32. Balakumar K, Raghavan CV, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B Biointerfaces. 2013;112:337–343. https://doi.org/10.1016/j.colsurfb.2013.08.025.

  33. Balata GF, Essa EA, Shamardl HA, Zaidan SH, Abourehab MA. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des Dev Ther. 2016;10:117. https://doi.org/10.2147/DDST.S95905.

    Article  CAS  Google Scholar 

  34. Babu DR, Hornof V, Neale G. Effects of temperature and time on interfacial tension behavior between heavy oils and alkaline solutions. Can J Chem Eng. 1984;62(1):156–159. https://doi.org/10.1002/cjce.5450620124.

  35. Dash RN, Mohammed H, Humaira T, Ramesh D. Design, optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced solubility and dissolution. Saudi Pharm J. 2015;23(5):528–40. https://doi.org/10.1016/j.jsps.2015.01.024.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang N, Zhang F, Xu S, Yun K, Wu W, Pan W. Formulation and evaluation of luteolin supersaturatable self-nanoemulsifying drug delivery system (S-SNEDDS) for enhanced oral bioavailability. J Drug Deliv Sci Technol. 2020;58:101783. https://doi.org/10.1016/j.jddst.2020.101783.

    Article  CAS  Google Scholar 

  37. Frizzo CP, Tier AZ, Bender CR, Gindri IM, Villetti MA, Zanatta N, Bonacorso HG, Martins MA. Structural and physical aspects of ionic liquid aggregates in solution, chap 7. Ionic liquidscurrent state of the art. InTech. 2015. https://doi.org/10.5722/59287.

  38. Balakrishnan P, Lee BJ, Oh DH, Kim JO, Lee YI, Kim DD, Jee JP, Lee YB, Woo JS, Yong CS, Choi HG. Enhanced oral bioavailability of coenzyme Q10 by self-emulsifying drug delivery systems. Int J Pharm. 2009;374(1):66–72. https://doi.org/10.1016/j.ijpharm.2009.03.008.

    Article  CAS  PubMed  Google Scholar 

  39. Czajkowska-Kośnik A, Szekalska M, Amelian A, Szymańska E, Winnicka K. Development and evaluation of liquid and solid self-emulsifying drug delivery systems for atorvastatin. Molecules. 2015;20(12):21010–22. https://doi.org/10.3390/molecules201219745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prajapati ST, Joshi HA, Patel CN. Preparation and characterization of self-microemulsifying drug delivery system of olmesartan medoxomil for bioavailability improvement. J Pharm. 2013. https://doi.org/10.1155/2013/728425.

    Article  Google Scholar 

  41. Chary PS, Rajana N, Devabattula G, Bhavana V, Singh H, Godugu C, Guru SK, Singh SB, Meha NK. Design, fabrication and evaluation of stabilized polymeric mixed micelles for effective management in cancer therapy. Pharm Res. 2022;39(11):2761–80. https://doi.org/10.1007/s11095-022-03395-8.

    Article  CAS  PubMed  Google Scholar 

  42. Li YQ, Kong DX, Wu H. Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind Crops Prod. 2013;41:269–78. https://doi.org/10.1016/j.indcrop.2012.04.056.

    Article  CAS  Google Scholar 

  43. Kassem AA, et al. Self-nanoemulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: design, optimization, in vitro and in vivo evaluation. J Mol Liq. 2016;218:219–232. https://doi.org/10.1016/j.molliq.2016.02.081.

  44. Gupta S, Chavhan S, Sawant KK. Self-nanoemulsifying drug delivery system for adefovir dipivoxil: design, characterization, in vitro and ex vivo evaluation. Colloids Surf A. 2011;392(1):145–55. https://doi.org/10.1016/j.colsurfa.2011.09.048.

    Article  CAS  Google Scholar 

  45. Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)–challenges and road ahead. Drug Del. 2015;22(6):675–90. https://doi.org/10.3109/10717544.2014.896058.

    Article  CAS  PubMed  Google Scholar 

  46. Zakaria AS, Afifi SA, Elkhodairy KA. Newly developed topical cefotaxime sodium hydrogels: antibacterial activity and in vivo evaluation. Biomed Res Int. 2016;1–15. https://doi.org/10.1155/2016/6525163.

  47. Wang T, Zhao P, Zhao Q, Wang B, Wang S. The mechanism for increasing the oral bioavailability of poorly water-soluble drugs using uniform mesoporous carbon spheres as a carrier. Drug Del. 2016;23(2):420–8. https://doi.org/10.3109/10717544.2014.916767.

  48. Reeves GK, Travis RC, Green J, Bull D, Tipper S, Baker K, Beral V, Peto R, Bell J, Zelenika D, Lathrop M. Incidence of breast cancer and its subtypes in relation to individual and multiple low-penetrance genetic susceptibility loci. JAMA. 2010;304(4):426–34. https://doi.org/10.1001/jama.2010.1042.

    Article  CAS  PubMed  Google Scholar 

  49. Galatage ST, Trivedi R, Bhagwat DA. Oral self-emulsifying nanoemulsion systems for enhancing dissolution, bioavailability and anti-cancer effects of camptothecin. J Drug Deliv Sci Technol. 2022;78:103929. https://doi.org/10.1016/j.jddst.2022.103929.

  50. Vela L, Gonzalo O, Naval J, Marzo I. Direct interaction of bax and bak proteins with Bcl-2 homology domain 3 (BH3)-only proteins in living cells revealed by fluorescence complementation. J Biol Chem. 2013;288(7):4935–46. https://doi.org/10.1074/jbc.M112.422204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schenk RL, Strasser A, Dewson G. BCL-2: long and winding path from discovery to therapeutic target. Biochem Biophys Res Commun. 2017;482(3):459–469. https://doi.org/10.1016/j.bbrc.2016.10.100.

  52. Ding J, Zhang Z, Roberts GJ, Falcone M, Miao Y, Shao Y, Zhang XC, Andrews DW, Lin J. Bcl-2 and Bax interact via the BH1-3 groove-BH3 motif interface and a novel interface involving the BH4 motif. J Biol Chem. 2010;285(37):28749–63. https://doi.org/10.1074/jbc.M110.148361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balakumar K, Raghavan CV, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B. 2013;112:337–43. https://doi.org/10.1016/j.colsurfb.2013.08.025.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad (Ministry of Chemical and Fertilizers, India), for providing extending facilities during this manuscript (Manuscript communication no.: NIPER-H/2023-).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelesh Kumar Mehra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 847 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajana, N., Chary, P.S., Pooja, Y.S. et al. Quality by design approach-based fabrication and evaluation of self-nanoemulsifying drug delivery system for improved delivery of venetoclax. Drug Deliv. and Transl. Res. 14, 1277–1300 (2024). https://doi.org/10.1007/s13346-023-01462-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01462-0

Keywords

Navigation