Skip to main content

Advertisement

Log in

Kinetic assessment of iontophoretic delivery efficiency of niosomal tetracycline hydrochloride incorporated in electroconductive gel

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to conduct the kinetic assessment of iontophoretic delivery of niosomal tetracycline-HCl formulated in an electroconductive gel. Tween-80 and Span-80 were used to obtain tetracycline-HCl niosomes with an average diameter of 101.9 ± 3.3 nm, a polydispersity index of 0.247 ± 0.004, a zeta potential of − 34.1 mV, and an entrapment efficiency of 70.08 ± 0.16%. Four different gel preparations, two of which contained niosomal tetracycline-HCl, were transdermally delivered using Franz diffusion cells under the trigger effect of iontophoresis, applied at 0.2, 0.5, and 1 mA/cm2 current density. The control group was the passive diffusion results of the preparation made using a tetracycline-HCl-based drug marketed in Turkey. The control group was compared with the groups that contained (a) tetracycline-HCl in an electroconductive gel, (b) the niosomal tetracycline-HCl formulation in water, and (c) the niosomal tetracycline-HCl formulation in the electroconductive gel. The group with the niosomal formulation in the electroconductive gel displayed the highest increase in iontophoretic transdermal delivery relative to the control group, displaying a 2-, 2.1-, and 2.2-fold increase, respectively, by current density. The experimental results of transdermal delivery using the synergistic effect of niosomal formulation in electroconductive gel and the trigger effect of iontophoresis appeared to divert slightly from zero-order kinetics, demonstrating a statistically significant increase in the rate of controlled transdermal drug delivery. Considering that about 20% of the formulation is transdermally delivered in the first half-hour, the iontophoretic transdermal delivery of niosomal tetracycline-HCl can be efficiently used in local iontophoretic therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

If needed, the datasets used in this study can be obtained from the corresponding author upon reasonable request.

References

  1. Lee H, Song C, Baik S, Kim D, Hyeon T, Kim DH. Device-assisted transdermal drug delivery. Adv Drug Deliver Rev. 2018;127:35–45. https://doi.org/10.1016/j.addr.2017.08.009.

    Article  CAS  Google Scholar 

  2. Leite-Silva VR, de Almeida MM, Fradin A, Grice JE, Roberts MS. Delivery of drugs applied topically to the skin. Expert Rev Dermatol. 2012;7:383–97. https://doi.org/10.1586/edm.12.32.

    Article  CAS  Google Scholar 

  3. Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Rel. 1994;30:1–15. https://doi.org/10.1016/0168-3659(94)90039-6.

    Article  CAS  Google Scholar 

  4. Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Rel. 2016;240:77–92. https://doi.org/10.1016/j.jconrel.2015.10.049.

    Article  CAS  Google Scholar 

  5. Petrilli R, Lopez RF. Physical methods for topical skin drug delivery: concepts and applications. Brazilian J Pharm Sci. 2018;54. https://doi.org/10.1590/s2175-97902018000001008.

  6. Mitragotri S. Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers. Adv Drug Deliver Rev. 2013;65:100–3. https://doi.org/10.1016/j.addr.2012.07.016.

    Article  CAS  Google Scholar 

  7. Kauscher U, Holme MN, Björnmalm M, Stevens MM. Physical stimuli-responsive vesicles in drug delivery: beyond liposomes and polymersomes. Adv Drug Deliver Rev. 2019;138:259–75. https://doi.org/10.1016/j.addr.2018.10.012.

    Article  CAS  Google Scholar 

  8. Jain S, Chaudhari BH, Swarnakar NK. Preparation and characterization of niosomal gel for iontophoresis mediated transdermal delivery of isosorbide dinitrate. Drug Deliver Trans Res. 2011;1:309–21. https://doi.org/10.1007/s13346-011-0035-1.

    Article  CAS  Google Scholar 

  9. Seleci DA, Seleci M, Walter J-G, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater. 2016;1. https://doi.org/10.1155/2016/7372306.

  10. Hamishehkar H, Hasanpouri A, Lotfipour F, Ghanbarzadeh S. Improvement of dermal delivery of tetracycline using vesicular nanostructures. Res Pharm Sci. 2018;13:385. https://doi.org/10.4103/1735-5362.236831.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hua S, Wu SY. The use of lipid-based nanocarriers for targeted pain therapies. Front Pharmacol. 2013;4:143. https://doi.org/10.3389/fphar.2013.00143.

  12. Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliver. 2016;23:3319–29. https://doi.org/10.1080/10717544.2016.1177136.

    Article  CAS  Google Scholar 

  13. Metselaar JM, Storm G. Liposomes in the treatment of inflammatory disorders. Expert Opin Drug Deliv. 2005;2:465–76.

    Article  CAS  PubMed  Google Scholar 

  14. Abdelkader H, Alani AW, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2013;21:87–100.

    Article  PubMed  Google Scholar 

  15. Muzzalupo R, Tavano L. Niosomal drug delivery for transdermal targeting: recent advances. Res Reports Transdermal Drug Deliv. 2015;4:23–33.

    Article  CAS  Google Scholar 

  16. Shirsand SB, Kanani KM, Keerthy D, Nagendrakumar D, Para MS. Formulation and evaluation of ketoconazole niosomal gel drug delivery system. Int J Pharm Invest. 2012;2:201.

    Article  CAS  Google Scholar 

  17. Patel KK, Kumar P, Thakkar HP. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS Pharm Sci Tech. 2012;13:1502–10.

    Article  CAS  Google Scholar 

  18. Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: a review on niosomal research in the last decade. J Drug Deliver Sci Technol. 2020;56: 101581.

    Article  CAS  Google Scholar 

  19. Wang Y, Thakur R, Fan Q, Michniak B. Transdermal iontophoresis: combination strategies to improve transdermal iontophoretic drug delivery. Europ J Pharm Biopharm. 2005;60:179–91.

    Article  CAS  Google Scholar 

  20. Wang Y, Zeng L, Song W, Liu J. Influencing factors and drug application of iontophoresis in transdermal drug delivery: an overview of recent progress. Drug Deliv Trans Res. 2021. https://doi.org/10.1007/s13346-021-00898-6.

    Article  Google Scholar 

  21. Barry BW. Lipid-protein-partitioning theory of skin penetration enhancement. J Control Rel. 1991;15:237–48.

    Article  CAS  Google Scholar 

  22. Guy RH, Kalia YN, Delgado-Charro MB, Merino V, López A, Marro D. Iontophoresis: electrorepulsion and electroosmosis. J Control Rel. 2000;64:129–32.

    Article  CAS  Google Scholar 

  23. Williams AC, Barry BW. Skin absorption enhancers. Crit Rev Therap Drug Carrier Sys. 1992;9(3–4):305–53.

    CAS  Google Scholar 

  24. Qiang Z, Adams C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 2004;38:2874–90.

    Article  CAS  PubMed  Google Scholar 

  25. Manjunatha RG, Prasad R, Sharma S, Narayan RP, Koul V. Iontophoretic delivery of lidocaine hydrochloride through ex-vivo human skin. J Dermatol Treat. 2019;31:191–9.

    Article  Google Scholar 

  26. Chenwei S, Bu N, Hu X. Recent trends in electronic skin for transdermal drug delivery. Int Pharm. 2023;10. https://doi.org/10.1016/j.ipha.2023.08.001.

  27. Bezruk I, Vrakin V, Savchenko L, Materiienko A, Georgiyants V. Development and validation of tetracycline hydrochloride assay procedure by spectrophotometry in compounded ointment. Scrip Sci Pharm. 2017;4. https://doi.org/10.14748/ssp.v4i1.2117.

  28. Tavano L, Picci N, Ioele G, Muzzalupo R. Tetracycline-niosomes versus tetracycline hydrochloride-niosomes: how to modulate encapsulation and percutaneous permeation properties. J Drug. 2017;11–6. https://doi.org/10.24218/jod.2017.6.

  29. Abdelbary G, El-Gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech. 2008;9(3):740–7. https://doi.org/10.1208/s12249-008-9105-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bakshi P, Vora D, Hemmady K, Banga AK. Iontophoretic skin delivery systems: success and failures. İnt J Pharm. 2023;1–9. https://doi.org/10.1016/j.ipha.2023.08.001

  31. Juárez-Osornio C, Gracia-Fadrique J. Structures similar to lipid emulsions and liposomes. Dipalmitoylphosphatidylcholine, cholesterol, Tween 20–Span 20 or Tween 80–Span 80 in aqueous media. J Liposome Res. 2016;(27):139–50.

  32. Shalaby AR, Salama NA, Abou-Raya SH, Emam WH, Mehaya FM. Validation of HPLC method for determination of tetracycline residues in chicken meat and liver. Food Chem. 2011;124:1660–6.

    Article  CAS  Google Scholar 

  33. Yasin U, Bilal M, Bashir H, Amirzada MI, Sumrin A, Asad MH. Preparation and nanoencapsulation of lectin from Lepidium sativum on chitosan-tripolyphosphate nanoparticle and their cytotoxicity against hepatocellular carcinoma cells (HepG2). BioMed Res Int. 2020;1–11:2020.

    Google Scholar 

  34. Wertz PW, Stover PM, Abraham W, Downing DT. Lipids of chicken epidermis. J Lipid Res. 1986;27:427–35.

    Article  CAS  PubMed  Google Scholar 

  35. Reza MI, Goel D, Gupta RK, Warsi MH. Formulation of ketoconazole loaded nano dispersive gel using swollen micelles technique and its in vitro characterization. Int J Pharm Pharmaceut Sci. 2018;10(3):162–6.

    CAS  Google Scholar 

  36. Phipps JB, Padmanabhan RV, Lattin GA. Iontophoretic delivery model inorganic and drug ions. J Pharmaceut Sci. 1989;78:365–9.

    Article  CAS  Google Scholar 

  37. Mathematical models of drug release. In: Marcos Luciano Bruschi (Ed). Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing. 2015;63–6. ISBN 9780081000922. https://doi.org/10.1016/B978-0-08-100092-2.00005-9.

  38. Espinal-Ruiz M, Restrepo-Sánchez L-P, Narváez-Cuenca C-E. Effect of pectins on the mass transfer kinetics of monosaccharides, amino acids, and a corn oil-in-water emulsion in a Franz diffusion cell. Food Chem. 2016;209:144–53.

    Article  CAS  PubMed  Google Scholar 

  39. Duman G, Aslan I, Ozer AY, Inanc I, Taralp A. Liposome, gel and lipogelosome formulations containing sodium hyaluronate. J Liposome Res. 2014;24(4):259–69. https://doi.org/10.3109/08982104.2014.907305.

    Article  CAS  PubMed  Google Scholar 

  40. Yaghoobian M, Haeri A, Bolourchian N, Shahhosseni S, Dadashzadeh S. The impact of surfactant composition and surface charge of niosomes on the oral absorption of repaglinide as a BCS II model drug. Int J Nanomedicine. 2020;15:8767–878. https://doi.org/10.2147/IJN.S261932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Croitoru C, Roata IC, Alexandru P, Elena-Manuela S. Diffusion and controlled release in physically crosslinked poly (vinyl alcohol)/iota-carrageenan hydrogel blends. Polymers. 2020;7(12):1544. https://doi.org/10.3390/polym12071544.

    Article  CAS  Google Scholar 

  42. Awad D, Tabod I, Lutz S, Wessolowski H, Gabel D. Interaction of Na2B12H11SH with liposomes: influence on zeta potential and particle size. J Organometal Chem. 2005;690(11):2732–5.

    Article  CAS  Google Scholar 

  43. Kumar R, Bhupinder S, Bakshi G, Prakash O. Development of liposomal systems of finasteride for topical applications: design, characterization, and in vitro evaluation. Pharmaceut Develop Technol. 2007;12(6):591–1.

    Article  CAS  Google Scholar 

  44. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8. https://doi.org/10.1186/1556-276x-8-102.

  45. Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. Surface modifications of nanoparticles for stability in biological fluids. Materials. 2018;11:1154.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guy RH, Delgado-Charro MB, Kalia YN. Iontophoretic transport across the skin. Skin Pharmacol Appl Skin Physiol. 2001;14:35–40. https://doi.org/10.1159/000056388.

    Article  CAS  PubMed  Google Scholar 

  47. Rouser G, Fleischer S, Yamamoto A. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorous analysis of spots. Lipids. 1970;5:494–6.

    Article  CAS  PubMed  Google Scholar 

  48. Fang J-Y, Hong C-T, Chiu W-T, Wang Y-Y. Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharmaceut. 2001;219:61–72.

    Article  CAS  Google Scholar 

  49. Chang W-K, Tai Y-J, Chiang C-H, Hu C-S, Hong P-D, Yeh M-K. The comparison of protein-entrapped liposomes and lipoparticles: preparation, characterization, and efficacy of cellular uptake. Int J Nanomed. 2011;6:2403–17.

    CAS  Google Scholar 

  50. Vinograd AM, Fasina A, Dean AJ, Shofer F, Panebianco NL, Lewiss RE, Gupta S, Rao AK, Henwood PC. Evaluation of noncommercial ultrasound gels for use in resource-limited settings. J Ultrasound Med. 2018;38:371–7.

    Article  PubMed  Google Scholar 

  51. Wang Y, Qu Z, Wang W, Yu D. PVA/CMC/PEDOT: PSS mixture hydrogels with high response and low impedance electronic signals for ECG monitoring. Colloids Surf B: Biointerfaces. 2021;208: 112088.

    Article  CAS  PubMed  Google Scholar 

  52. Li SK, Peck KD. Passive and iontophoretic transport through the skin polar pathway. Skin Pharmacol Physiol. 2013;26:243–53. https://doi.org/10.1159/000351926.

    Article  CAS  PubMed  Google Scholar 

  53. Nugroho AK, Della Pasqua O, Danhof M, Bouwstra JA. Compartmental modeling of transdermal iontophoretic transport: I. In vitro model derivation and application. Pharm Res. 2004;21:1974–84. https://doi.org/10.1023/B:PHAM.0000048187.54125.ac.

    Article  CAS  PubMed  Google Scholar 

  54. Takeuchi I, Takeshita T, Suzuki T, Makino K. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for positively charged drugs. Colloids Surf B Biointerfaces. 2017;160:520–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding agency, whether public, commercial, or not-for-profit, provided any specific grant for this research.

Author information

Authors and Affiliations

Authors

Contributions

SS, EG, MM, BU: methodology, validation, data curation, formal analysis. BU: imaging and instrumentation. MM: statistical analysis. EG: iontophoresis, kinetics, draft writing. MO: kinetics; GD, FSU: conceptualization, methodology, kinetics, draft writing, model writing, writing—review and editing, supervision, project administration, formal analysis.

Corresponding author

Correspondence to Burcu Uner.

Ethics declarations

Consent for publication

Not applicable. No human studies have been performed in this research.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duman, G., Gucu, E., Utku, F.S. et al. Kinetic assessment of iontophoretic delivery efficiency of niosomal tetracycline hydrochloride incorporated in electroconductive gel. Drug Deliv. and Transl. Res. 14, 1206–1217 (2024). https://doi.org/10.1007/s13346-023-01452-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01452-2

Keywords

Navigation