Skip to main content
Log in

Nanotechnology of inhalable vaccines for enhancing mucosal immunity

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Vaccines are the cornerstone of world health. The majority of vaccines are formulated as injectable products, facing the drawbacks of cold chain transportation, needle-stick injuries, and primary systemic immunity. Inhalable vaccines exhibited unique advantages due to their small dose, easy to use, quick effect, and simultaneous induction of mucosal and systemic responses. Facing global pandemics, especially the coronavirus disease 2019 (COVID-19), a majority of inhalable vaccines are in preclinical or clinical trials. A better understanding of advanced delivery technologies of inhalable vaccines may provide new scientific insights for developing inhalable vaccines. In this review article, detailed immune mechanisms involving mucosal, cellular, and humoral immunity were described. The preparation methods of inhalable vaccines were then introduced. Advanced nanotechnologies of inhalable vaccines containing inhalable nucleic acid vaccines, inhalable adenovirus vector vaccines, novel adjuvant–assisted inhalable vaccines, and biomaterials for inhalable vaccine delivery were emphatically discussed. Meanwhile, the latest clinical progress in inhalable vaccines for COVID-19 and tuberculosis was discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Piot P, Larson HJ, O’Brien KL, N’kengasong J, Ng E, Sow S, et al. Immunization: vital progress, unfinished agenda. Nature. 2019;575:119–29.

    Article  CAS  PubMed  Google Scholar 

  2. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383:2603–15.

    Article  CAS  PubMed  Google Scholar 

  3. Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM, et al. Interim results of a phase 1–2a trial of Ad26.COV2.S Covid-19 vaccine. N Engl J Med. 2021;384:1824–35.

    Article  CAS  PubMed  Google Scholar 

  4. Jansen EM, Frijlink HW, Hinrichs WL, Ruigrok MJ. Are inhaled mRNA vaccines safe and effective? A review of preclinical studies. Expert Opin Drug Deliv. 2022;19:1471–85.

    Article  CAS  PubMed  Google Scholar 

  5. Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368:1012–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fraser R, Orta-Resendiz A, Mazein A, Dockrell DH. Upper respiratory tract mucosal immunity for SARS-CoV-2 vaccines. Trends Mol Med. 2023;29:255–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lavelle EC, Ward RW. Mucosal vaccines - fortifying the frontiers. Nat Rev Immunol. 2022;22:236–50.

    Article  CAS  PubMed  Google Scholar 

  8. Ejemel M, Li Q, Hou S, Schiller ZA, Tree JA, Wallace A, et al. A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction. Nat Commun. 2020;11:4198.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xu F, Wu S, Yi L, Peng S, Wang F, Si W, et al. Safety, mucosal and systemic immunopotency of an aerosolized adenovirus-vectored vaccine against SARS-CoV-2 in rhesus macaques. Emerg Microbes Infect. 2022;11:438–41.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baker JR, Farazuddin M, Wong PT, O’Konek JJ. The unfulfilled potential of mucosal immunization. J Allergy Clin Immunol. 2022;150:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang J, Zeng C, Cox TM, Li C, Son YM, Cheon IS, et al. Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination. Sci Immunol. 2022;7:eadd4853.

    Article  CAS  PubMed  Google Scholar 

  12. Oh JE, Song E, Moriyama M, Wong P, Zhang S, Jiang R, et al. Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Sci Immunol. 2021;6:eabj5129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science. 2014;346:98–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ariotti S, Hogenbirk MA, Dijkgraaf FE, Visser LL, Hoekstra ME, Song J-Y, et al. T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science. 2014;346:101–5.

    Article  CAS  PubMed  Google Scholar 

  15. Amezcua Vesely MC, Pallis P, Bielecki P, Low JS, Zhao J, Harman CCD, et al. Effector TH17 cells give rise to long-lived TRM cells that are essential for an immediate response against bacterial infection. Cell. 2019;178:1176-1188.e15.

    Article  CAS  PubMed  Google Scholar 

  16. Knight FC, Gilchuk P, Kumar A, Becker KW, Sevimli S, Jacobson ME, et al. Mucosal immunization with a pH-responsive nanoparticle vaccine induces protective CD8+ lung-resident memory T cells. ACS Nano. 2019;13:10939–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rakhra K, Abraham W, Wang C, Moynihan KD, Li N, Donahue N, et al. Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells. Sci Immunol. 2021;6:eabd8003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12:749–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang N, Bevan MJ. CD8(+) T cells: foot soldiers of the immune system. Immunity. 2011;35:161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Adv Drug Deliv Rev. 2021;176:113889.

    Article  CAS  PubMed  Google Scholar 

  21. Nakanishi Y, Lu B, Gerard C, Iwasaki A. CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature. 2009;462:510–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laidlaw BJ, Zhang N, Marshall HD, Staron MM, Guan T, Hu Y, et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity. 2014;41:633–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akkaya M, Kwak K, Pierce SK. B cell memory: building two walls of protection against pathogens. Nat Rev Immunol. 2020;20:229–38.

    Article  CAS  PubMed  Google Scholar 

  24. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2022;40:413–42.

    Article  CAS  PubMed  Google Scholar 

  25. Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018;18:46–61.

    Article  CAS  PubMed  Google Scholar 

  26. Porsch F, Mallat Z, Binder CJ. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. Cardiovasc Res. 2021;117:2544–62.

    CAS  PubMed  Google Scholar 

  27. Li Y, Wang G, Li N, Wang Y, Zhu Q, Chu H, et al. Structural insights into immunoglobulin M. Science. 2020;367:1014–7.

    Article  CAS  PubMed  Google Scholar 

  28. Sterlin D, Mathian A, Miyara M, Mohr A, Anna F, Claër L, et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci Transl Med. 2021;13:eabd2223.

    Article  CAS  PubMed  Google Scholar 

  29. Sudduth ER, Trautmann-Rodriguez M, Gill N, Bomb K, Fromen CA. Aerosol pulmonary immune engineering. Adv Drug Deliv Rev. 2023;199:114831.

    Article  CAS  PubMed  Google Scholar 

  30. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6:67–74.

    Article  CAS  PubMed  Google Scholar 

  31. Chow MYT, Chang RYK, Chan H-K. Inhalation delivery technology for genome-editing of respiratory diseases. Adv Drug Deliv Rev. 2021;168:217–28.

    Article  CAS  PubMed  Google Scholar 

  32. Pleasants RA, Hess DR. Aerosol delivery devices for obstructive lung diseases. Respir Care. 2018;63:708–33.

    Article  PubMed  Google Scholar 

  33. Miao H, Huang K, Li Y, Li R, Zhou X, Shi J, et al. Optimization of formulation and atomization of lipid nanoparticles for the inhalation of mRNA. Int J Pharm. 2023;640:123050.

    Article  CAS  PubMed  Google Scholar 

  34. Watts AB, McConville JT, Williams RO. Current therapies and technological advances in aqueous aerosol drug delivery. Drug Dev Ind Pharm. 2008;34:913–22.

    Article  CAS  PubMed  Google Scholar 

  35. Gomez M, Vehring R. Spray drying and particle engineering in dosage form design for global vaccines. J Aerosol Med Pulm Drug Deliv. 2022;35:121–38.

    Article  CAS  PubMed  Google Scholar 

  36. Tomar J, Patil HP, Bracho G, Tonnis WF, Frijlink HW, Petrovsky N, et al. Advax augments B and T cell responses upon influenza vaccination via the respiratory tract and enables complete protection of mice against lethal influenza virus challenge. J Control Release. 2018;288:199–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Authelin J-R, Rodrigues MA, Tchessalov S, Singh SK, McCoy T, Wang S, et al. Freezing of biologicals revisited: scale, stability, excipients, and degradation stresses. J Pharm Sci. 2020;109:44–61.

    Article  CAS  PubMed  Google Scholar 

  38. Gomez M, McCollum J, Wang H, Ordoubadi M, Jar C, Carrigy NB, et al. Development of a formulation platform for a spray-dried, inhalable tuberculosis vaccine candidate. Int J Pharm. 2021;593:120121.

    Article  CAS  PubMed  Google Scholar 

  39. Gomez M, McCollum J, Wang H, Bachchhav S, Tetreau I, Gerhardt A. Evaluation of the stability of a spray-dried tuberculosis vaccine candidate designed for dry powder respiratory delivery. Vaccine. 2021;39:5025–36.

    Article  CAS  PubMed  Google Scholar 

  40. Saluja V, Amorij J-P, Kapteyn JC, de Boer AH, Frijlink HW, Hinrichs WLJ. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. J Control Release. 2010;144:127–33.

    Article  CAS  PubMed  Google Scholar 

  41. Wanning S, Süverkrüp R, Lamprecht A. Pharmaceutical spray freeze drying. Int J Pharm. 2015;488:136–53.

    Article  CAS  PubMed  Google Scholar 

  42. Qin M, Du G, Sun X. Recent advances in the noninvasive delivery of mRNA. Acc Chem Res. 2021;54:4262–71.

    Article  CAS  PubMed  Google Scholar 

  43. Tang J, Cai L, Xu C, Sun S, Liu Y, Rosenecker J, et al. Nanotechnologies in delivery of DNA and mRNA vaccines to the nasal and pulmonary mucosa. Nanomaterials (Basel). 2022;12:226.

    Article  CAS  PubMed  Google Scholar 

  44. Roy CJ, Ault A, Sivasubramani SK, Gorres JP, Wei C-J, Andersen H, et al. Aerosolized adenovirus-vectored vaccine as an alternative vaccine delivery method. Respir Res. 2011;12:153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kachura MA, Hickle C, Kell SA, Sathe A, Calacsan C, Kiwan R, et al. A CpG-Ficoll nanoparticle adjuvant for anthrax protective antigen enhances immunogenicity and provides single-immunization protection against inhaled anthrax in monkeys. J Immunol. 2016;196:284–97.

    Article  CAS  PubMed  Google Scholar 

  46. Muralidharan P, Malapit M, Mallory E, Hayes D, Mansour HM. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine. 2015;11:1189–99.

    Article  CAS  PubMed  Google Scholar 

  47. Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188:114416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6:1078–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu H, Angelova A, Angelov B, Dyett B, Matthews L, Zhang Y, et al. Real-time pH-dependent self-assembly of ionisable lipids from COVID-19 vaccines and in situ nucleic acid complexation. Angew Chem Int Ed Engl. 2023;e202304977.

  50. Angelov B, Angelova A, Filippov SK, Narayanan T, Drechsler M, Štěpánek P, et al. DNA/fusogenic lipid nanocarrier assembly: millisecond structural dynamics. J Phys Chem Lett. 2013;4:1959–64.

    Article  CAS  PubMed  Google Scholar 

  51. Qiu Y, Man RCH, Liao Q, Kung KLK, Chow MYT, Lam JKW. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J Control Release. 2019;314:102–15.

    Article  CAS  PubMed  Google Scholar 

  52. Dubey A, Lobo CL, Gs R, Shetty A, Hebbar S, El-Zahaby SA. Exosomes: emerging implementation of nanotechnology for detecting and managing novel corona virus- SARS-CoV-2. Asian J Pharm Sci. 2022;17:20–34.

    Article  PubMed  Google Scholar 

  53. Li M, Qin M, Song G, Deng H, Wang D, Wang X, et al. A biomimetic antitumor nanovaccine based on biocompatible calcium pyrophosphate and tumor cell membrane antigens. Asian J Pharm Sci. 2021;16:97–109.

    Article  PubMed  Google Scholar 

  54. Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019;27:710–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Legere RM, Cohen ND, Poveda C, Bray JM, Barhoumi R, Szule JA, et al. Safe and effective aerosolization of in vitro transcribed mRNA to the respiratory tract epithelium of horses without a transfection agent. Sci Rep. 2021;11:371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patel AK, Kaczmarek JC, Bose S, Kauffman KJ, Mir F, Heartlein MW, et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv Mater. 2019;31:e1805116.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Qiu Y, Chow MYT, Liang W, Chung WWY, Mak JCW, Lam JKW. From pulmonary surfactant, synthetic KL4 peptide as effective siRNA delivery vector for pulmonary delivery. Mol Pharm. 2017;14:4606–17.

    Article  CAS  PubMed  Google Scholar 

  58. Blanchard EL, Vanover D, Bawage SS, Tiwari PM, Rotolo L, Beyersdorf J, et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat Biotechnol. 2021;39:717–26.

    Article  CAS  PubMed  Google Scholar 

  59. Rotolo L, Vanover D, Bruno NC, Peck HE, Zurla C, Murray J, et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat Mater. 2023;22:369–79.

    Article  CAS  PubMed  Google Scholar 

  60. Dinh P-UC, Paudel D, Brochu H, Popowski KD, Gracieux MC, Cores J, et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat Commun. 2020;11:1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics. 2020;10:3684–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang Z, Shi J, Xie J, Wang Y, Sun J, Liu T, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng. 2020;4:69–83.

    Article  CAS  PubMed  Google Scholar 

  63. Popowski KD, Moatti A, Scull G, Silkstone D, Lutz H, López de Juan Abad B, et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter. 2022;5:2960–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang H, Leal J, Soto MR, Smyth HDC, Ghosh D. Aerosolizable lipid nanoparticles for pulmonary delivery of mRNA through design of experiments. Pharmaceutics. 2020;12(11):1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim J, Jozic A, Lin Y, Eygeris Y, Bloom E, Tan X, et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano. 2022;16:14792–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lokugamage MP, Vanover D, Beyersdorf J, Hatit MZC, Rotolo L, Echeverri ES, et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat Biomed Eng. 2021;5:1059–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Eygeris Y, Gupta M, Kim J, Sahay G. Chemistry of lipid nanoparticles for RNA delivery. Acc Chem Res. 2022;55:2–12.

    Article  CAS  PubMed  Google Scholar 

  68. Chavda VP, Vora LK, Pandya AK, Patravale VB. Intranasal vaccines for SARS-CoV-2: from challenges to potential in COVID-19 management. Drug Discov Today. 2021;26:2619–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma D, Tian S, Qin Q, Yu Y, Jiao J, Xiong X, Guo Y, Zhang X, Ouyang X. Construction of an inhalable recombinant M2e-FP-expressing Bacillus subtilis spores-based vaccine and evaluation of its protection efficacy against influenza in a mouse model. Vaccine. 2023;41(30):4402–13.

    Article  CAS  PubMed  Google Scholar 

  70. Lee J, Arun Kumar S, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater. 2018;80:31–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yadav PD, Kumar S, Agarwal K, Jain M, Patil DR, Maithal K, et al. Needle-free injection system delivery of ZyCoV-D DNA vaccine demonstrated improved immunogenicity and protective efficacy in rhesus macaques against SARS-CoV-2. J Med Virol. 2023;95:e28484.

    Article  CAS  PubMed  Google Scholar 

  72. Tatlow D, Tatlow C, Tatlow S, Tatlow S. A novel concept for treatment and vaccination against Covid-19 with an inhaled chitosan-coated DNA vaccine encoding a secreted spike protein portion. Clin Exp Pharmacol Physiol. 2020;47:1874–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu Y, Yuen P-W, Lam JK-W. Intranasal DNA vaccine for protection against respiratory infectious diseases: the delivery perspectives. Pharmaceutics. 2014;6:378–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kodama Y, Nakashima M, Nagahara T, Oyama N, Hashizume J, Nakagawa H, et al. Development of a DNA vaccine for melanoma metastasis by inhalation based on an analysis of transgene expression characteristics of naked pDNA and a ternary complex in mouse lung tissues. Pharmaceutics. 2020;12:E540.

    Article  Google Scholar 

  75. Rosada RS, de la Torre LG, Frantz FG, Trombone APF, Zárate-Bladés CR, Fonseca DM, et al. Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes. BMC Immunol. 2008;9:38.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chen C, Han D, Cai C, Tang X. An overview of liposome lyophilization and its future potential. J Control Release. 2010;142:299–311.

    Article  CAS  PubMed  Google Scholar 

  77. Kang ML, Cho CS, Yoo HS. Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol Adv. 2009;27:857–65.

    Article  CAS  PubMed  Google Scholar 

  78. Kumar US, Afjei R, Ferrara K, Massoud TF, Paulmurugan R. Gold-nanostar-chitosan-mediated delivery of SARS-CoV-2 DNA vaccine for respiratory mucosal immunization: development and proof-of-principle. ACS Nano. 2021;15:17582–601.

    Article  CAS  PubMed  Google Scholar 

  79. Schiedner G, Morral N, Parks RJ, Wu Y, Koopmans SC, Langston C, et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet. 1998;18:180–3.

    Article  CAS  PubMed  Google Scholar 

  80. Hage E, Gerd Liebert U, Bergs S, Ganzenmueller T, Heim A. Human mastadenovirus type 70: a novel, multiple recombinant species D mastadenovirus isolated from diarrhoeal faeces of a haematopoietic stem cell transplantation recipient. J Gen Virol. 2015;96:2734–42.

    Article  CAS  PubMed  Google Scholar 

  81. Afkhami S, Yao Y, Xing Z. Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens. Mol Ther Methods Clin Dev. 2016;3:16030.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bolinger B, Sims S, Swadling L, O’Hara G, de Lara C, Baban D, et al. Adenoviral vector vaccination induces a conserved program of CD8(+) T cell memory differentiation in mouse and man. Cell Rep. 2015;13:1578–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jeyanathan M, Fritz DK, Afkhami S, Aguirre E, Howie KJ, Zganiacz A, et al. Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans. JCI Insight. 2022;7:e155655.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bolton DL, Song K, Tomaras GD, Rao S, Roederer M. Unique cellular and humoral immunogenicity profiles generated by aerosol, intranasal, or parenteral vaccination in rhesus macaques. Vaccine. 2017;35:639–46.

    Article  CAS  PubMed  Google Scholar 

  85. Manjaly Thomas Z-R, Satti I, Marshall JL, Harris SA, Lopez Ramon R, Hamidi A, et al. Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: a phase I randomised controlled trial. PLoS Med. 2019;16:e1002790.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med. 2021;384:2187–201.

    Article  CAS  PubMed  Google Scholar 

  87. Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatullin AI, Shcheblyakov DV, Dzharullaeva AS, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396:887–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu S, Huang J, Zhang Z, Wu J, Zhang J, Hu H, et al. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect Dis. 2021;21:1654–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu F-C, Wurie AH, Hou L-H, Liang Q, Li Y-H, Russell JBW, et al. Safety and immunogenicity of a recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in Sierra Leone: a single-centre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2017;389:621–8.

    Article  CAS  PubMed  Google Scholar 

  90. Wu S, Zhong G, Zhang J, Shuai L, Zhang Z, Wen Z, et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nat Commun. 2020;11:4081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pulendran B, S Arunachalam P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20:454–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bastola R, Noh G, Keum T, Bashyal S, Seo J-E, Choi J, et al. Vaccine adjuvants: smart components to boost the immune system. Arch Pharm Res. 2017;40:1238–48.

    Article  CAS  PubMed  Google Scholar 

  93. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  CAS  PubMed  Google Scholar 

  94. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449:419–26.

    Article  CAS  PubMed  Google Scholar 

  95. Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19:1597–608.

    Article  CAS  PubMed  Google Scholar 

  96. Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10:787–96.

    Article  CAS  PubMed  Google Scholar 

  97. Hanna CC, Ashhurst AS, Quan D, Maxwell JWC, Britton WJ, Payne RJ. Synthetic protein conjugate vaccines provide protection against Mycobacterium tuberculosis in mice. Proc Natl Acad Sci U S A. 2021;118:e2013730118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Reed SG, Carter D, Casper C, Duthie MS, Fox CB. Correlates of GLA family adjuvants’ activities. Semin Immunol. 2018;39:22–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rossi I, Spagnoli G, Buttini F, Sonvico F, Stellari F, Cavazzini D, et al. A respirable HPV-L2 dry-powder vaccine with GLA as amphiphilic lubricant and immune-adjuvant. J Control Release. 2021;340:209–20.

    Article  CAS  PubMed  Google Scholar 

  100. Patil HP, Murugappan S, ter Veer W, Meijerhof T, de Haan A, Frijlink HW, et al. Evaluation of monophosphoryl lipid A as adjuvant for pulmonary delivered influenza vaccine. J Control Release. 2014;174:51–62.

    Article  CAS  PubMed  Google Scholar 

  101. Zhu W, Park J, Pho T, Wei L, Dong C, Kim J, et al. ISCOMs/MPLA-aadjuvanted SDAD protein nanoparticles induce improved mucosal immune responses and cross-protection in mice. Small. 2023;e2301801.

  102. Wang Q, Bergholz JS, Ding L, Lin Z, Kabraji SK, Hughes ME, et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat Commun. 2022;13:3022.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Patil V, Hernandez-Franco JF, Yadagiri G, Bugybayeva D, Dolatyabi S, Feliciano-Ruiz N, et al. A split influenza vaccine formulated with a combination adjuvant composed of alpha-D-glucan nanoparticles and a STING agonist elicits cross-protective immunity in pigs. J Nanobiotechnology. 2022;20:477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Feng B, Lu X, Zhang GQ, Zhao LB, Mei D. STING agonist delivery by lipid calcium phosphate nanoparticles enhances immune activation for neuroblastoma. Acta Materia Medica. 2023;2(2):216–27.

    Article  Google Scholar 

  105. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367:eaau0810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Luo J, Liu X-P, Xiong F-F, Gao F-X, Yi Y-L, Zhang M, et al. Enhancing immune response and heterosubtypic protection ability of inactivated H7N9 vaccine by using STING agonist as a mucosal adjuvant. Front Immunol. 2019;10:2274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Walvekar P, Kumar P, Choonara YE. Long-acting vaccine delivery systems. Adv Drug Deliv Rev. 2023;198:114897.

    Article  CAS  PubMed  Google Scholar 

  108. Andrianov AK, Langer R. Polyphosphazene immunoadjuvants: historical perspective and recent advances. J Control Release. 2021;329:299–315.

    Article  CAS  PubMed  Google Scholar 

  109. Jeong H, Lee C-S, Lee J, Lee J, Hwang HS, Lee M, et al. Hemagglutinin nanoparticulate vaccine with controlled photochemical immunomodulation for pathogenic influenza-specific immunity. Adv Sci (Weinh). 2021;8:e2100118.

    Article  PubMed  Google Scholar 

  110. Wang N, Wei C, Zhang Z, Liu T, Wang T. Aluminum nanoparticles acting as a pulmonary vaccine adjuvant-delivery system (VADS) able to safely elicit robust systemic and mucosal immunity. J Inorg Organomet Polym Mater. 2020;30:4203–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stillman ZS, Decker GE, Dworzak MR, Bloch ED, Fromen CA. Aluminum-based metal-organic framework nanoparticles as pulmonary vaccine adjuvants. J Nanobiotechnology. 2023;21:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Balke I, Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev. 2019;145:119–29.

    Article  CAS  PubMed  Google Scholar 

  113. Wang C, Zheng X, Gai W, Wong G, Wang H, Jin H, et al. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice. Antiviral Res. 2017;140:55–61.

    Article  CAS  PubMed  Google Scholar 

  114. Wang Z, Popowski KD, Zhu D, de Juan Abad BL, Wang X, Liu M, et al. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. Nat Biomed Eng. 2022;6:791–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zheng B, Peng W, Guo M, Huang M, Gu Y, Wang T, et al. Inhalable nanovaccine with biomimetic coronavirus structure to trigger mucosal immunity of respiratory tract against COVID-19. Chem Eng J. 2021;418:129392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bai X, Zhao G, Chen Q, Li Z, Gao M, Ho W, et al. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Sci Adv. 2022;8:eabn7162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Haque S, Pouton CW, McIntosh MP, Ascher DB, Keizer DW, Whittaker MR, et al. The impact of size and charge on the pulmonary pharmacokinetics and immunological response of the lungs to PLGA nanoparticles after intratracheal administration to rats. Nanomedicine. 2020;30:102291.

    Article  CAS  PubMed  Google Scholar 

  118. Kabiri M, Sankian M, Sadri K, Tafaghodi M. Robust mucosal and systemic responses against HTLV-1 by delivery of multi-epitope vaccine in PLGA nanoparticles. Eur J Pharm Biopharm. 2018;133:321–30.

    Article  CAS  PubMed  Google Scholar 

  119. Park K, Skidmore S, Hadar J, Garner J, Park H, Otte A, et al. Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J Control Release. 2019;304:125–34.

    Article  CAS  PubMed  Google Scholar 

  120. Arafa MG, Girgis GNS, El-Dahan MS. Chitosan-coated PLGA nanoparticles for enhanced ocular anti-inflammatory efficacy of atorvastatin calcium. Int J Nanomedicine. 2020;15:1335–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Du G, Hathout RM, Nasr M, Nejadnik MR, Tu J, Koning RI, et al. Intradermal vaccination with hollow microneedles: a comparative study of various protein antigen and adjuvant encapsulated nanoparticles. J Control Release. 2017;266:109–18.

    Article  CAS  PubMed  Google Scholar 

  122. Thomas C, Rawat A, Hope-Weeks L, Ahsan F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol Pharm. 2011;8:405–15.

    Article  CAS  PubMed  Google Scholar 

  123. Li B, Siuta M, Bright V, Koktysh D, Matlock BK, Dumas ME, et al. Improved proliferation of antigen-specific cytolytic T lymphocytes using a multimodal nanovaccine. Int J Nanomedicine. 2016;11:6103–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Im JS, Arora P, Bricard G, Molano A, Venkataswamy MM, Baine I, et al. Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity. 2009;30:888–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Scherließ R, Janke J. Preparation of poly-lactic-co-glycolic acid nanoparticles in a dry powder formulation for pulmonary antigen delivery. Pharmaceutics. 2021;13:1196.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Slütter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine. 2010;28:6282–91.

    Article  PubMed  Google Scholar 

  127. Gu P, Wusiman A, Wang S, Zhang Y, Liu Z, Hu Y, et al. Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant to enhance immune responses. Carbohydr Polym. 2019;223:115128.

    Article  CAS  PubMed  Google Scholar 

  128. Du X, Tan D, Gong Y, Zhang Y, Han J, Lv W, et al. A new poly(I:C)-decorated PLGA-PEG nanoparticle promotes Mycobacterium tuberculosis fusion protein to induce comprehensive immune responses in mice intranasally. Microb Pathog. 2022;162:105335.

    Article  CAS  PubMed  Google Scholar 

  129. Elkomy MH, Khallaf RA, Mahmoud MO, Hussein RRS, El-Kalaawy AM, Abdel-Razik A-RH, et al. Intratracheally inhalable nifedipine-loaded chitosan-PLGA nanocomposites as a promising nanoplatform for lung targeting: snowballed protection via regulation of TGF-β/β-catenin pathway in bleomycin-induced pulmonary fibrosis. Pharmaceuticals (Basel). 2021;14:1225.

    Article  CAS  PubMed  Google Scholar 

  130. Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, et al. Chitosan-based nanoparticles against viral infections. Front Cell Infect Microbiol. 2021;11:643953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sun B, Yu S, Zhao D, Guo S, Wang X, Zhao K. Polysaccharides as vaccine adjuvants. Vaccine. 2018;36(35):5226–34.

    Article  CAS  PubMed  Google Scholar 

  132. Mathews PD, Mertins O, Angelov B, Angelova A. Cubosomal lipid nanoassemblies with pH-sensitive shells created by biopolymer complexes: a synchrotron SAXS study. J Colloid Interface Sci. 2022;607:440–50.

    Article  CAS  PubMed  Google Scholar 

  133. He M, Zhong C, Hu H, Jin Y, Chen Y, Lou K, et al. Cyclodextrin/chitosan nanoparticles for oral ovalbumin delivery: preparation, characterization and intestinal mucosal immunity in mice. Asian J Pharm Sci. 2019;14:193–203.

    Article  PubMed  Google Scholar 

  134. Zhuo S-H, Wu J-J, Zhao L, Li W-H, Zhao Y-F, Li Y-M. A chitosan-mediated inhalable nanovaccine against SARS-CoV-2. Nano Res. 2022;15:4191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tabynov K, Solomadin M, Turebekov N, Babayeva M, Fomin G, Yadagiri G, et al. An intranasal vaccine comprising SARS-CoV-2 spike receptor-binding domain protein entrapped in mannose-conjugated chitosan nanoparticle provides protection in hamsters. Sci Rep. 2023;13:12115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ebensen T, Arntz A, Schulze K, Hanefeld A, Guzmán CA, Scherließ R. Pulmonary application of novel antigen-loaded chitosan nano-particles co-administered with the mucosal adjuvant C-Di-AMP resulted in enhanced immune stimulation and dose sparing capacity. Pharmaceutics. 2023;15:1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Alfagih IM, Kaneko K, Kunda NK, Alanazi F, Dennison SR, Tawfeek HM, et al. In vitro characterization of inhalable cationic hybrid nanoparticles as potential vaccine carriers. Pharmaceuticals (Basel). 2021;14:164.

    Article  CAS  PubMed  Google Scholar 

  138. Mohamed A, Pekoz AY, Ross K, Hutcheon GA, Saleem IY. Pulmonary delivery of Nanocomposite Microparticles (NCMPs) incorporating miR-146a for treatment of COPD. Int J Pharm. 2019;569:118524.

    Article  CAS  PubMed  Google Scholar 

  139. COVID-19 Vaccine Tracker. Vaccines candidates by trial phase. 2022. https://covid19.trackvaccines.org/vaccines. Accessed 22 Dec 2022.

  140. Satti I, Meyer J, Harris SA, Manjaly Thomas Z-R, Griffiths K, Antrobus RD, et al. Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infect Dis. 2014;14:939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tomar J, Tonnis WF, Patil HP, de Boer AH, Hagedoorn P, Vanbever R, et al. Pulmonary immunization: deposition site is of minor relevance for influenza vaccination but deep lung deposition is crucial for hepatitis B vaccination. Acta Pharm Sin B. 2019;9(6):1231–40.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Li Qin: conceptualization, writing—original draft, writing—review and editing. Yanhua Sun: writing—review and editing. Nan Gao: writing—review and editing. Guixia Ling: supervision and project administration. Peng Zhang: supervision and project administration.

Corresponding author

Correspondence to Peng Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors agreed with the content and all gave consent to submit the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Sun, Y., Gao, N. et al. Nanotechnology of inhalable vaccines for enhancing mucosal immunity. Drug Deliv. and Transl. Res. 14, 597–620 (2024). https://doi.org/10.1007/s13346-023-01431-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01431-7

Keywords

Navigation