Skip to main content

Advertisement

Log in

Evaluation of microstructure, dissolution rate, and oral bioavailability of paclitaxel poloxamer 188 solid dispersion

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Poor solubility is a major challenge for enhancing the oral bioavailability and clinical application of many drugs, including the broad-spectrum chemotherapy drug paclitaxel (PTX). A practical approach to improving the solubility of insoluble drugs is through the use of solid dispersion (SD). This study aimed to investigate the potential of the triblock copolymer, poloxamer 188 (P188), as a carrier for preparing solid dispersion of paclitaxel using spray drying technology. We systematically studied its microstructure, dissolution behavior in vitro, and pharmacokinetics. Our findings demonstrate that PTX exists in an amorphous state in copolymer composed of polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) P188, with stronger miscibility with hydrophobic PPO segments. All three in vitro dissolution models revealed that the release rate of drugs in SD was significantly higher compared to that of physical mixtures (PM) as well as raw drugs. Furthermore, our pharmacokinetic results showed that the area under the curve(AUC) of PTX in SD was 6 times higher than that of active pharmaceutical ingredient(API), 4.5 times higher than PM, and the highest blood drug concentration (Cmax) reached 357.51 ± 125.54 (ng/mL), approximately 20 times higher than API. Overall, our findings demonstrate that the dissolution rate of amorphous PTX in SD significantly improves, effectively enhancing the oral bioavailability of PTX.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Della CL, Barra F, Foreste V, Giampaolino P, Evangelisti G, Ferrero S, Bifulco G. Advances in paclitaxel combinations for treating cervical cancer. Expert Opin Pharmacother. 2020;21(6):663–77.

    Article  Google Scholar 

  2. Fasching PA, Link T, Hauke J, Seither F, Jackisch C, Klare P, Schmatloch S, Hanusch C, Huober J, Stefek A, Seiler S, Schmitt WD, Uleer C, Doering G, Rhiem K, Schneeweiss A, Engels K, Denkert C, Schmutzler RK, Hahnen E, Untch M, Burchardi N, Blohmer JU, Loibl S. Neoadjuvant paclitaxel/olaparib in comparison to paclitaxel/carboplatinum in patients with HER2-negative breast cancer and homologous recombination deficiency (GeparOLA study). Ann Oncol. 2021;32(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  3. Okada T, Okamoto I, Sato H, Ito T, Miyake K, Tsukahara K. Efficacy and safety of paclitaxel combined with cetuximab for head and neck squamous cell carcinoma. In Vivo. 2021;35(2):1253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hu Y, Zhang K, Zhu X, Zheng X, Wang C, Niu X, Jiang T, Ji X, Zhao W, Pang L, Qi Y, Li F, Li L, Xu Z, Gu W, Zou H. Synergistic inhibition of drug-resistant colon cancer growth with PI3K/mTOR dual inhibitor BEZ235 and nano-emulsioned paclitaxel via reducing multidrug resistance and promoting apoptosis. Int J Nanomedicine. 2021;16:2173–86.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alves RC, Fernandes RP, Eloy JO, Salgado HRN, Chorilli M. Characteristics, properties and analytical methods of paclitaxel: a review. Crit Rev Anal Chem. 2018;48(2):110–8.

    Article  CAS  PubMed  Google Scholar 

  6. Tran P, Park J. Formulation of solid dispersion to improve dissolution and oral bioavailability of poorly soluble dexibuprofen. Pharm Dev Technol. 2021;26(4):422–30.

    Article  CAS  PubMed  Google Scholar 

  7. Vinarov Z, Katev V, Radeva D, Tcholakova S, Denkov ND. Micellar solubilization of poorly water-soluble drugs: effect of surfactant and solubilizate molecular structure. Drug Dev Ind Pharm. 2018;44(4):677–86.

    Article  CAS  PubMed  Google Scholar 

  8. Du J, Li X, Zhao H, Zhou Y, Wang L, Tian S, Wang Y. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm. 2015;495(2):738–49.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Z, Mei L, Feng S. Paclitaxel drug delivery systems. Expert Opin Drug Deliv. 2013;10(3):325–40.

    Article  CAS  PubMed  Google Scholar 

  10. Rahman M, Son M, Kim H, Lee I, Jeon H, Kim M, Kwon H, Park S, Jang J, Kim S. DHP107, a novel oral paclitaxel formulation induces less peripheral neuropathic pain and pain-related molecular alteration than intravenous paclitaxel preparation in rat. J Adv Biotechnol Exp Ther. 2019;2(2):55–64.

    Article  Google Scholar 

  11. Kim S, Seo JH, Ahn J, Kim T, Kang SY, Sohn J, Yang Y, Park KH, Moon YW, Lim S, Kang MJ, Yoon KE, Cho HJ, Lee KS. Phase II study of DHP107 (oral paclitaxel) in the first-line treatment of HER2-negative recurrent or metastatic breast cancer (OPTIMAL study). Ther Adv Med Oncol. 2021;13:1–11.

    Article  Google Scholar 

  12. Sekiguchi K, Obi N. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961;9(11):866–72.

  13. Altamimi MA, Neau SH. Investigation of the in vitro performance difference of drug-Soluplus® and drug-PEG 6000 dispersions when prepared using spray drying or lyophilization. Saudi Pharma J. 2017;25(3):419–39.

  14. Reddy RK, Khalil SA, Wafik GM. Effect of dioctyl sodium sulfosuccinate and poloxamer 188 on dissolution and intestinal absorption of sulfadiazine and sulfisoxazole in rats. J Pharm Sci. 1976;65(1):115–8.

    Article  CAS  PubMed  Google Scholar 

  15. Sharma A, Jain CP, Tanwar YS. Preparation and characterization of solid dispersions of carvedilol with poloxamer 188. J Chil Chem Soc. 2013;58(1):1553–7.

    Article  CAS  Google Scholar 

  16. Gorajana A, Rajendran A, Yew L, Dua K. Preparation and characterization of cefuroxime axetil solid dispersions using hydrophilic carriers. Int J Pharm Investig. 2015;5(3):171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu C, Liu Z, Liu C, Zhang Y, Fan H, Qian F. Improvement of antialveolar echinococcosis efficacy of albendazole by a novel nanocrystalline formulation with enhanced oral bioavailability. ACS Infect Dis. 2020;6(5):802–10.

    Article  CAS  PubMed  Google Scholar 

  18. Qian F, Tao J, Desikan S, Hussain M, Smith RL. Mechanistic investigation of Pluronic® based nano-crystalline drug-polymer solid dispersions. Pharm Res. 2007;24(8):1551–60.

    Article  CAS  PubMed  Google Scholar 

  19. Mohammad MA, Alhalaweh A, Velaga SP. Hansen solubility parameter as a tool to predict cocrystal formation. Int J Pharm. 2011;407(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  20. Sun Y, Tao J, Zhang GGZ, Yu L. Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci. 2010;99(9):4023–31.

    Article  CAS  PubMed  Google Scholar 

  21. Shanmugam S, Im HT, Sohn YT, Kim Y, Park J, Park E, Woo JS. Enhanced oral bioavailability of paclitaxel by solid dispersion granulation. Drug Dev Ind Pharm. 2015;41(11):1864–76.

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Wang S, Wang S, Liu C, Su C, Hageman M, Hussain M, Haskell R, Stefanski K, Qian F. Initial drug dissolution from amorphous solid dispersions controlled by polymer dissolution and drug-polymer interaction. Pharm Res. 2016;33(10):2445–58.

    Article  PubMed  Google Scholar 

  23. Miao L, Liang Y, Pan W, Gou J, Yin T, Zhang Y, He H, Tang X. Effect of supersaturation on the oral bioavailability of paclitaxel/polymer amorphous solid dispersion. Drug Deliv Transl Res. 2019;9(1):344–56.

    Article  CAS  PubMed  Google Scholar 

  24. Liggins RT, Hunter WL, Burt HM. Solid-state characterization of paclitaxel. J Pharm Sci. 1997;86(12):1458–63.

    Article  CAS  PubMed  Google Scholar 

  25. Choi J, Cho NH, Kim D, Park J. Comparison of paclitaxel solid dispersion and polymeric micelles for improved oral bioavailability and in vitro anti-cancer effects. Mater Sci Eng, C. 2019;100:247–59.

    Article  CAS  Google Scholar 

  26. Weyna DR, Cheney ML, Shan N, Hanna M, Wojtas A, Zaworotko MJ. Crystal engineering of multiple-component organic solids: pharmaceutical cocrystals of tadalafil with persistent hydrogen bonding motifs. CrystEngComm. 2012;14(7):2377–80.

    Article  CAS  Google Scholar 

  27. Baghel S,Cathcart H, O'Reilly NJ. Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and 1H NMR. Int J Pharm. 2018;536(1):414–25.

  28. Gao D, Zhu D, Zhou X, Dong S, Chen Y. Inhomogeneous phase significantly reduces oral bioavailability of felodipine/PVPVA amorphous solid dispersion. Mol Pharm. 2023;20(1):409–18.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Liu C, Chen Z, Su C, Hageman M, Hussain M, Haskell R, Stefanski K, Qian F. Drug–polymer–water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol Pharm. 2015;12(2):576–89.

    Article  CAS  PubMed  Google Scholar 

  30. Mukesh S, Joshi P, Bansal AK, Kashyap MC, Mandal SK, Sathe V, Sangamwar AT. Amorphous salts solid dispersions of celecoxib: enhanced biopharmaceutical performance and physical stability. Mol Pharm. 2021;18(6):2334–48.

    Article  CAS  PubMed  Google Scholar 

  31. Qian F, Huang J, Hussain MA. Drug–polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99(7):2941–7.

    Article  CAS  PubMed  Google Scholar 

  32. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.

    Article  CAS  PubMed  Google Scholar 

  33. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  34. Guzman HR, Tawa M, Zhang Z, Ratanabanangkoon P, Shaw P, Gardner CR, Chen H, Moreau JP, Almarsson O, Remenar JF. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci. 2007;96(10):2686–702.

    Article  CAS  PubMed  Google Scholar 

  35. Liu C, Chen Z, Chen Y, Lu J, Li Y, Wang S, Wu G, Qian F. Improving oral bioavailability of sorafenib by optimizing the “spring” and “parachute” based on molecular interaction mechanisms. Mol Pharm. 2016;13(2):599–608.

    Article  CAS  PubMed  Google Scholar 

  36. Sun DD, Lee PI. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. J Control Release. 2015;211:85–93.

    Article  CAS  PubMed  Google Scholar 

  37. Alakhova DY, Kabanov AV. Pluronics and MDR reversal: an update. Mol Pharm. 2014;11(8):2566–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma L, Wei Y, Zhou Y, Ma X, Wu X. Effects of Pluronic F68 and Labrasol on the intestinal absorption and pharmacokinetics of rifampicin in rats. Arch Pharm Res. 2011;34(11):1939–43.

    Article  CAS  PubMed  Google Scholar 

  39. Catalan-Figueroa J, Garcia MA, Contreras P, Boisset CB, Gonzalez PM, Fiedler JL, Perez MF, Morales JO. Poloxamer 188-coated ammonium methacrylate copolymer nanocarriers enhance loperamide permeability across Pgp-expressing epithelia. Mol Pharm. 2021;18(2):743–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the science and technology of Qinghai Province (No. 2022-QY-201) and the National Natural Science Foundation of China (Project No. 82060644).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, experimental work, writing (draft), and writing revision: YL; experimental work and writing (draft): YZ; experimental work: QL.Y; and conceptualization and manuscript revision: XP.Z and CH.H.

Corresponding author

Correspondence to Chunhui Hu.

Ethics declarations

Ethics approval and consent to participate

All animal study protocols were approved by the Institutional Animal Care and Utilization Committee of Qinghai University, CAS (approval numbers -QHU -IPC -23041).

Consent for publication

Not applicable. No human studies have been performed in this research.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, Y., Yan, Q. et al. Evaluation of microstructure, dissolution rate, and oral bioavailability of paclitaxel poloxamer 188 solid dispersion. Drug Deliv. and Transl. Res. 14, 329–341 (2024). https://doi.org/10.1007/s13346-023-01400-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01400-0

Keywords

Navigation