Skip to main content

Advertisement

Log in

Fabrication and characterization of bilayer scaffolds made of decellularized dermis/nanofibrous collagen for healing of full-thickness wounds

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Skin tissue engineering has progressed from simple wound dressings to biocompatible materials with desired physico-chemical properties that can deliver regenerative biomolecules. This study describes using a novel biomimetic hybrid scaffold of decellularized dermis/collagen fibers that can continuously deliver stromal cell-derived factor-1 alpha (SDF-1α) for skin regeneration. In diabetic rat models, the idea that sustained SDF-1α infusion could increase the recruitment of CXCR4-positive cells at the injury site and improve wound regeneration was investigated. The morphology of the scaffold, its biocompatibility, and the kinetics of SDF-1 release were all assessed. SDF-1α was successfully incorporated into collagen nanofibers, resulting in a 200-h continuous release profile. The microscopic observations exhibited that cells are attached and proliferated on proposed scaffolds. As evaluated by in vivo study and histological examination, fabricated scaffold with SDF-1α release capacity exhibited a remarkably more robust ability to accelerate wound regeneration than the control group. Besides, the SDF-1α-loaded scaffold demonstrated functional effects on the proliferation and recruitment of CD31 and CXCR4-positive cells in the wound bed. Additionally, no adverse effects such as hyperplasia or scarring were found during the treatment period. It may be concluded that the fabricated hybrid scaffold based on natural polymer opens up a new option for topical administration of bioactive molecules. We believe the SDF-1α-loaded hybrid scaffold has promise for skin tissue engineering.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yoon DS, Lee Y, Ryu HA, Jang Y, Lee KM, Choi Y, et al. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomater. 2016;1(38):59–68.

    Article  Google Scholar 

  2. Moura J, Rodrigues J, Goncalves M, Amaral C, Lima M, Carvalho E. Impaired T-cell differentiation in diabetic foot ulceration. Cell Mol Immunol. 2017;14(9):758–69.

    Article  CAS  PubMed  Google Scholar 

  3. Shen YI, Cho H, Papa AE, Burke JA, Chan XY, Duh EJ, et al. Engineered human vascularized constructs accelerate diabetic wound healing. Biomaterials. 2016;102:107–19.

    Article  CAS  PubMed  Google Scholar 

  4. Chong HC, Chan JS, Goh CQ, Gounko NV, Luo B, Wang X, et al. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice. Mol Ther. 2014;22(9):1593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brubaker AL, Rendon JL, Ramirez L, Choudhry MA, Kovacs EJ. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J Immunol. 2013;190(4):1746–57.

    Article  CAS  PubMed  Google Scholar 

  6. Sawada N, Jiang A, Takizawa F, Safdar A, Manika A, Tesmenitsky Y, et al. Endothelial PGC-1alpha mediates vascular dysfunction in diabetes. Cell Metab. 2014;19(2):246–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bermudez DM, Xu J, Herdrich BJ, Radu A, Mitchell ME, Liechty KW. Inhibition of stromal cell-derived factor-1alpha further impairs diabetic wound healing. J Vasc Surg. 2011;53(3):774–84.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Milan PB, Lotfibakhshaiesh N, Joghataie MT, Ai J, Pazouki A, Kaplan DL, et al. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater. 2016;45:234–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Otero-Vinas M, Falanga V. Mesenchymal Stem Cells in Chronic Wounds: The Spectrum from Basic to Advanced Therapy. Adv Wound Care (New Rochelle). 2016;5(4):149–63.

    Article  PubMed  Google Scholar 

  10. Chen FM, Wu LA, Zhang M, Zhang R, Sun HH. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: promises, strategies, and translational perspectives. Biomaterials. 2011;32(12):3189–209.

    Article  CAS  PubMed  Google Scholar 

  11. Andreas K, Sittinger M, Ringe J. Toward in situ tissue engineering: chemokine-guided stem cell recruitment. Trends Biotechnol. 2014;32(9):483–92.

    Article  CAS  PubMed  Google Scholar 

  12. Dalonneau F, Liu XQ, Sadir R, Almodovar J, Mertani HC, Bruckert F, et al. The effect of delivering the chemokine SDF-1alpha in a matrix-bound manner on myogenesis. Biomaterials. 2014;35(15):4525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bollag WB, Hill WD. CXCR4 in epidermal keratinocytes: crosstalk within the skin. J Invest Dermatol. 2013;133(11):2505–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ho TK, Tsui J, Xu S, Leoni P, Abraham DJ, Baker DM. Angiogenic effects of stromal cell-derived factor-1 (SDF-1/CXCL12) variants in vitro and the in vivo expressions of CXCL12 variants and CXCR4 in human critical leg ischemia. J Vasc Surg. 2010;51(3):689–99.

    Article  PubMed  Google Scholar 

  15. Valenzuela-Fernandez A, Planchenault T, Baleux F, Staropoli I, Le-Barillec K, Leduc D, et al. Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem. 2002;277(18):15677–89.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson EM, Kwee BJ, Lewin SA, Raimondo T, Mehta M, Mooney DJ. Local delivery of VEGF and SDF enhances endothelial progenitor cell recruitment and resultant recovery from ischemia. Tissue Eng Part A. 2015;21(7–8):1217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang YC, Liu TJ. Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles. Acta Biomater. 2012;8(3):1048–56.

    Article  CAS  PubMed  Google Scholar 

  18. Takayama T, Dai J, Tachi K, Shohara R, Kasai H, Imamura K, et al. The potential of stromal cell-derived factor-1 delivery using a collagen membrane for bone regeneration. J Biomater Appl. 2017;31(7):1049–61.

    Article  CAS  PubMed  Google Scholar 

  19. Hivechi A, Milan PB, Modabberi K, Amoupour M, Ebrahimzadeh K, Gholipour AR, et al. Synthesis and characterization of exopolysaccharide encapsulated PCL/gelatin skin substitute for full-thickness wound regeneration. Polymers (Basel). 2021;13(6):854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohammadi MR, Nojoomi A, Mozafari M, Dubnika A, Inayathullah M, Rajadas J. Nanomaterials engineering for drug delivery: a hybridization approach. J Mater Chem B. 2017;5(22):3995–4018.

    Article  CAS  PubMed  Google Scholar 

  21. Einipour SK, Sadrjahani M, Rezapour A. Preparation and evaluation of antibacterial wound dressing based on vancomycin-loaded silk/dialdehyde starch nanoparticles. Drug Deliv Transl Res. 2022 Feb 27.

  22. Biondi M, Ungaro F, Quaglia F, Netti PA. Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev. 2008;60(2):229–42.

    Article  CAS  PubMed  Google Scholar 

  23. Naser Amini PBM, Vahid Hosseinpour Sarmadi, Bahareh Derakhshanmehr, Ahmad Hivechi, Fateme Khodaei, Masoud Hamidi, Sara Ashraf, Ghazaleh Larijani, Alireza Rezapour. Microorganism-derived biological macromolecules for tissue engineering. Front Med. 2022;16:358–377.

  24. Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev. 2007;59(14):1392–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim HY, Lee BM, Kim IS, Jin TH, Ko KH, Ryu YJ. Fabrication of triblock copolymer of Poly (rho-dioxanone-co-L-lactide)-BlockPoly (ethylene glycol) Nonwoven mats by electrospinning and applications for wound dressing. Polym Mater Sci Eng. 2004;91.

  26. Ivey JS, Abdollahi H, Herrera FA, Chang EI. Total muscle coverage versus AlloDerm human dermal matrix for implant-based breast reconstruction. Plast Reconstr Surg. 2019;143(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  27. Peiman Brouki Milan NA, Moein Amoupour, Ali Amadikuchaksaraei, Alireza Rezapour, Farshid Sefat, et al. Scaffolds for regeneration of dermoepidermal skin tissue. Handbook of Tissue Engineering Scaffolds: Elsevier Science; 2019. p. 193–209.

  28. Matouskova E, Broz L, Pokorna E, Konigova R. Prevention of burn wound conversion by allogeneic keratinocytes cultured on acellular xenodermis. Cell Tissue Bank. 2002;3(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  29. Heath DE. A review of decellularized extracellular matrix biomaterials for regenerative engineering applications. Regenerative Engineering and Translational Medicine. 2019;5(2):155–66.

    Article  CAS  Google Scholar 

  30. Jun I, Han HS, Edwards J, Jeon H (2018) Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int J Mol Sci 19(3):745. https://doi.org/10.3390/ijms19030745

  31. Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S (2016) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 10(9):715–738. https://doi.org/10.1002/term.1978

  32. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C (2022) Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater 1015–1031 S2452199X2100431X. https://doi.org/10.1016/j.bioactmat.2021.09.014

  33. Santschi M, Vernengo A, Eglin D, D’Este M, Wuertz-Kozak K. Decellularized matrix as a building block in bioprinting and electrospinning. Current Opinion in Biomedical Engineering. 2019;10:116–22.

    Article  Google Scholar 

  34. Rajan N, Habermehl J, Cote MF, Doillon CJ, Mantovani D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protoc. 2006;1(6):2753–8.

    Article  CAS  PubMed  Google Scholar 

  35. Heidari M, Bahrami SH, Ranjbar-Mohammadi M, Milan PB. Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;103: 109768.

    Article  CAS  PubMed  Google Scholar 

  36. Paris M, Porcelloni M, Binaschi M, Fattori D. Histone deacetylase inhibitors: from bench to clinic. J Med Chem. 2008;51(6):1505–29.

    Article  CAS  PubMed  Google Scholar 

  37. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338(1):17–31.

    Article  CAS  PubMed  Google Scholar 

  38. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11(5):384–400.

    Article  CAS  PubMed  Google Scholar 

  39. Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA. 2004;101(42):15064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dowling DP, Miller IS, Ardhaoui M, Gallagher WM. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J Biomater Appl. 2011;26(3):327–47.

    Article  CAS  PubMed  Google Scholar 

  41. Gharibi R, Shaker A, Rezapour-Lactoee A, Agarwal S. Antibacterial and biocompatible hydrogel dressing based on gelatin- and castor-oil-derived biocidal agent. ACS Biomater Sci Eng. 2021;7(8):3633–47.

    Article  CAS  PubMed  Google Scholar 

  42. Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater. 2010;6(7):2711–20.

    Article  CAS  PubMed  Google Scholar 

  43. Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE. Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu Rev Biochem. 2005;74:385–410.

    Article  CAS  PubMed  Google Scholar 

  44. Mohan R, Lorenz H, Myerson AS. Solubility measurement using differential scanning calorimetry. Ind Eng Chem Res. 2002;41(19):4854–62.

    Article  CAS  Google Scholar 

  45. Rabbany SY, Pastore J, Yamamoto M, Miller T, Rafii S, Aras R, et al. Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant. 2010;19(4):399–408.

    Article  PubMed  Google Scholar 

  46. Rezapour-Lactoee A, Yeganeh H, Gharibi R, Milan PB. Enhanced healing of a full-thickness wound by a thermoresponsive dressing utilized for simultaneous transfer and protection of adipose-derived mesenchymal stem cells sheet. J Mater Sci Mater Med. 2020;31(11):101.

    Article  CAS  PubMed  Google Scholar 

  47. Fedyk ER, Jones D, Critchley HO, Phipps RP, Blieden TM, Springer TA. Expression of stromal-derived factor-1 is decreased by IL-1 and TNF and in dermal wound healing. J Immunol. 2001;166(9):5749–54.

    Article  CAS  PubMed  Google Scholar 

  48. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, et al. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells. 2004;22(5):812–22.

    Article  PubMed  Google Scholar 

  49. Milan PB, Amini N, Mehrabi A, Mousazadeh S, Ababzadeh S, Rezapour A. Cell sources in cardiac tissue engineering: current choices. Curr Stem Cell Res Ther. 2021;16(6):745–52.

    Article  CAS  PubMed  Google Scholar 

  50. Avniel S, Arik Z, Maly A, Sagie A, Basst HB, Yahana MD, et al. Involvement of the CXCL12/CXCR4 pathway in the recovery of skin following burns. J Invest Dermatol. 2006;126(2):468–76.

    Article  CAS  PubMed  Google Scholar 

  51. Mirshahi F, Pourtau J, Li H, Muraine M, Trochon V, Legrand E, et al. SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thromb Res. 2000;99(6):587–94.

    Article  CAS  PubMed  Google Scholar 

  52. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 2016;35(7):816–26.

    Article  CAS  PubMed  Google Scholar 

  53. Lau TT, Wang DA. Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opin Biol Ther. 2011;11(2):189–97.

    Article  CAS  PubMed  Google Scholar 

  54. Singh P, Mohammad KS, Pelus LM. CXCR4 expression in the bone marrow microenvironment is required for hematopoietic stem and progenitor cell maintenance and early hematopoietic regeneration after myeloablation. Stem Cells. 2020;38(7):849–59.

    Article  CAS  PubMed  Google Scholar 

  55. Quan C, Cho MK, Shao Y, Mianecki LE, Liao E, Perry D, et al. Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin. Protein Cell. 2015;6(12):890–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the Iran University of Medical Sciences (IUMS) through research Grant No.1397–01-117–33032 and the Qom University of Medical Sciences (MUQ) through research Grant No. IR. MUQ. REC. 1398. 121.

Author information

Authors and Affiliations

Authors

Contributions

NA, AS, and AH wrote the main manuscript, MGM and MM reviewed the manuscript. SA and SK carried out data analysis. KE and MG prepared figures and validated experiments. AN prepared the supplementary figures. AR and PBM supervised the project and wrote the part of the manuscript with the insights of all other authors. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Peiman Brouki Milan or Alireza Rezapour.

Ethics declarations

Ethics approval

All institutional and national guidelines for the care and use of laboratory animals were followed. All animal experiments were performed in compliance with guidelines approved by the Animal Use and Care Administrative Advisory Committee at the University of Iran, Tehran, Iran (Ethical code No. IR.IUMS.REC.1398.752). Furthermore, all animal experiments comply with the National Institutes of Health guide for the care and use of laboratory animals (NIH Publications No. 8023, revised 1978).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 636 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, N., Hivechi, A., Asadpour, S. et al. Fabrication and characterization of bilayer scaffolds made of decellularized dermis/nanofibrous collagen for healing of full-thickness wounds. Drug Deliv. and Transl. Res. 13, 1766–1779 (2023). https://doi.org/10.1007/s13346-023-01292-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01292-0

Keywords

Navigation