Skip to main content

Advertisement

Log in

Corticosteroids in ophthalmology: drug delivery innovations, pharmacology, clinical applications, and future perspectives

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Corticosteroids remain the mainstay of the treatment for various ocular conditions affecting the ocular surface, anterior and posterior segments of the eye due to their anti-inflammatory, anti-oedematous, and anti-neovascularization properties. Prednisolone, prednisolone acetate, dexamethasone, triamcinolone acetonide, fluocinolone acetonide, and loteprednol etabonate are amongst the most widely used ophthalmic corticosteroids. Corticosteroids differ in their activity and potency in the eye due to their inherent pharmacological and pharmaceutical differences. Different routes and regimens are available for ocular administration of corticosteroids. Conventional topical application to the eye is the route of choice when targeting diseases affecting the ocular surface and anterior segment, while periocular, intravitreal, and suprachoroidal injections can be potentially effective for posterior segment diseases. Corticosteroid-induced intraocular pressure elevation and cataract formation remain the most significant local risks following topical as well as systemic corticosteroid administration. Invasive drug administration via intracameral, subconjunctival, and intravitreal injection can enhance ocular bioavailability and minimize dose and dosing frequency of administration, yet may exacerbate ocular side effects of corticosteroids. This review provides a critical appraisal of the ophthalmic uses of corticosteroid, routes of administration, drug delivery fundamentals and novel ocular implantable steroid delivery systems, factors influencing side effects, and future perspectives for ocular corticosteroid therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dell SJ, et al. A controlled evaluation of the efficacy and safety of loteprednol etabonate in the prophylactic treatment of seasonal allergic conjunctivitis. Am J Ophthalmol. 1997;123(6):791–7.

    Article  CAS  PubMed  Google Scholar 

  2. Study TLEUU. Controlled evaluation of loteprednol etabonate and prednisolone acetate in the treatment of acute anterior uveitis. Am J Ophthalmol. 1999;127(5):537–44.

    Article  Google Scholar 

  3. Pflugfelder SC, Tseng SC, Huang AJ. Non-preserved topical corticosteroid for treatment of dry eye, filamentary keratitis, and delayed tear clearance (or turnover), 2000, Google Patents.

  4. Pimentel MA, et al. Assessment of the accuracy of using ICD-9 codes to identify uveitis, herpes zoster ophthalmicus, scleritis, and episcleritis. JAMA Ophthalmol. 2016;134(9):1001–6.

    Article  PubMed  Google Scholar 

  5. Munir WM, et al. Intravitreal triamcinolone for treatment of complicated proliferative diabetic retinopathy and proliferative vitreoretinopathy. Can J Ophthalmol. 2005;40(5):598–604.

    Article  PubMed  Google Scholar 

  6. Allergan I. OZURDEX®product information, I. Allergan, Editor 2014, Allergan, Inc.

  7. Solomon SD, et al. Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(3):412–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meredith TA, et al. Postinjection endophthalmitis in the comparison of age-related macular degeneration treatments trials (CATT). Ophthalmology. 2015;122(4):817–21.

    Article  PubMed  Google Scholar 

  9. Struck H, Bariszlovich A. Comparison of 0.1% dexamethasone phosphate eye gel (Dexagel) and 1% prednisolone acetate eye suspension in the treatment of post-operative inflammation after cataract surgery. Graefes Arch Clin Exp Ophthalmol. 2001;239(10):737–42.

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz SG, et al. Update on corticosteroids for diabetic macular edema. Clin Ophthalmol. 2016;10:1723–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haller JA. Intravitreal corticosteroids: a review of therapeutic and surgical applications. Retina Today. 2009;S1:1–15.

    Google Scholar 

  12. Ayalasomayajula SP, Ashton P, Kompella UB. Fluocinolone inhibits VEGF expression via glucocorticoid receptor in human retinal pigment epithelial (ARPE-19) cells and TNF-α–induced angiogenesis in chick chorioallantoic membrane (CAM). J Ocul Pharmacol Ther. 2009;25(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  13. K Suresh P, Sah AK. Patent perspectives for corticosteroids based ophthalmic therapeutics. Recent Patents Drug Deliv Formul. 2014;8(3):206–23.

    Article  CAS  Google Scholar 

  14. Tripathi RC, et al. Corticosteroids and glaucoma risk. Drugs Aging. 1999;15(6):439–50.

    Article  CAS  PubMed  Google Scholar 

  15. Abdelkader H, Alany R, Pierscieonek B. Age-related cataract and drug therapy: opportunities and challenges for topical antioxidant delivery to the lens. J Pharm Pharmacol. 67:537–50.

  16. Carnahan MC, Goldstein DA. Ocular complications of topical, peri-ocular, and systemic corticosteroids. Curr Opin Ophthalmol. 2000;11(6):478–83.

    Article  CAS  PubMed  Google Scholar 

  17. Kwatra G, Mukhopadhyay S. Topical corticosteroids: pharmacology, in A treatise on topical corticosteroids in dermatology 2018, Springer p 11–22.

  18. Jóhannesson G, Stefánsson E, Loftsson T. Microspheres and nanotechnology for drug delivery, in Retinal Pharmacotherapeutics. 2016, Karger Publishers. p. 93–103.

  19. Gan L, et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm. 2010;396(1–2):179–87.

    Article  CAS  PubMed  Google Scholar 

  20. Bhagat R, et al. Comparison of the release profile and pharmacokinetics of intact and fragmented dexamethasone intravitreal implants in rabbit eyes. J Ocul Pharmacol Ther. 2014;30(10):854–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moffat AC, et al. Clarke’s analysis of drugs and poisons. Vol. 3. London: Pharmaceutical press; 2011.

    Google Scholar 

  22. Yang G, Ran Y, Yalkowsky SH. Prediction of the aqueous solubility: comparison of the general solubility equation and the method using an amended solvation energy relationship. J Pharm Sci. 2002;91(2):517–33.

    Article  CAS  PubMed  Google Scholar 

  23. Gao Y, et al. PLGA–PEG–PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev Ind Pharm. 2010;36(10):1131–8.

    Article  CAS  PubMed  Google Scholar 

  24. Fialho SL, Da Silva-Cunha A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Exp Ophthalmol. 2004;32(6):626–32.

    Article  PubMed  Google Scholar 

  25. Al-Muhammed J, et al. In-vivo studies on dexamethasone sodium phosphate liposomes. J Microencapsul. 1996;13(3):293–305.

    Article  CAS  PubMed  Google Scholar 

  26. Awan MA, et al. Penetration of topical and subconjunctival corticosteroids into human aqueous humour and its therapeutic significance. Br J Ophthalmol. 2009;93(6):708–13.

    Article  CAS  PubMed  Google Scholar 

  27. Papangkorn K, et al. A novel ocular drug delivery system of dexamethasone sodium phosphate for noninfectious uveitis treatment, in Advances in the Diagnosis and Management of Uveitis. 2018, IntechOpen.

  28. Boone A, Hui A, Jones L. Uptake and release of dexamethasone phosphate from silicone hydrogel and group I, II, and IV hydrogel contact lenses. Eye & Contact Lens. 2009;35(5):260–7.

    Article  Google Scholar 

  29. Ranch K, et al. Development of in situ ophthalmic gel of dexamethasone sodium phosphate and chloramphenicol: a viable alternative to conventional eye drops. J Appl Pharm Sci. 2017;7:101–8.

    CAS  Google Scholar 

  30. ElShaer A, et al. Nanoparticle-laden contact lens for controlled ocular delivery of prednisolone: formulation optimization using statistical experimental design. Pharmaceutics. 2016;8(2):14.

    Article  PubMed Central  CAS  Google Scholar 

  31. Hayton WL, Guttman DE, Levy G. Effect of complex formation on drug absorption XI: complexation of prednisone and prednisolone with dialkylpropionamides and its effect on prednisone transfer through an artificial lipoid barrier. J Pharm Sci. 1972;61(3):356–61.

    Article  CAS  PubMed  Google Scholar 

  32. Machatha SG, Yalkowsky SH. Comparison of the octanol/water partition coefficients calculated by ClogP®, ACDlogP and KowWin® to experimentally determined values. Int J Pharm. 2005;294(1–2):185–92.

    Article  CAS  PubMed  Google Scholar 

  33. Gaafar PM, et al. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res. 2014;24(3):204–15.

    Article  CAS  PubMed  Google Scholar 

  34. Katzer T, et al. Prednisolone-loaded nanocapsules as ocular drug delivery system: development, in vitro drug release and eye toxicity. J Microencapsul. 2014;31(6):519–28.

    Article  CAS  PubMed  Google Scholar 

  35. Diestelhorst M, et al. Effect of dexamethasone 0.1% and prednisolone acetate 1.0% eye drops on the blood-aqueous barrier after cataract surgery: a controlled randomized fluorophotometric study. Graefes Arch Clin Exp Ophthalmol. 1992;230(5):451–3.

    Article  CAS  PubMed  Google Scholar 

  36. Ibrahim SS, et al. Comparative effects of different cosurfactants on sterile prednisolone acetate ocular submicron emulsions stability and release. Colloids Surf B: Biointerfaces. 2009;69(2):225–31.

    Article  CAS  PubMed  Google Scholar 

  37. Yalkowsky SH, Valvani SC. Solubility and partitioning I: solubility of nonelectrolytes in water. J Pharm Sci. 1980;69(8):912–22.

    Article  CAS  PubMed  Google Scholar 

  38. Leibowitz HM, et al. Penetration of topically administered prednisolone acetate into the human aqueous humor. Am J Ophthalmol. 1977;83(3):402–6.

    Article  CAS  PubMed  Google Scholar 

  39. Elbialy NS, et al. Enhancement of the ocular therapeutic effect of prednisolone acetate by liposomal entrapment. J Biomed Nanotechnol. 2013;9(12):2105–16.

    Article  CAS  PubMed  Google Scholar 

  40. Malaekeh-Nikouei B, et al. Controlled release of prednisolone acetate from molecularly imprinted hydrogel contact lenses. J Appl Polym Sci. 2012;126(1):387–94.

    Article  CAS  Google Scholar 

  41. Schoenwald R, Boltralik J. A bioavailability comparison in rabbits of two steroids formulated as high-viscosity gels and reference aqueous preparations. Invest Ophthalmol Vis Sci. 1979;18(1):61–6.

    CAS  PubMed  Google Scholar 

  42. Block L, Patel R. Solubility and dissolution of triamcinolone acetonide. J Pharm Sci. 1973;62(4):617–21.

    Article  CAS  PubMed  Google Scholar 

  43. Tao Y, Jonas JB. Intravitreal triamcinolone. Ophthalmologica. 2011;225(1):1–20.

    Article  PubMed  CAS  Google Scholar 

  44. Jonas J, Kreissig I, Degenring R. Intraocular pressure after intravitreal injection of triamcinolone acetonide. Br J Ophthalmol. 2003;87(1):24–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh K, Mezei M. Liposomal ophthalmic drug delivery system I. Triamcinolone acetonide. Int J Pharm. 1983;16(3):339–44.

    Article  CAS  Google Scholar 

  46. Jaffe GJ, et al. Safety and pharmacokinetics of an intraocular fluocinolone acetonide sustained delivery device. Invest Ophthalmol Vis Sci. 2000;41(11):3569–75.

    CAS  PubMed  Google Scholar 

  47. Werawatganone P, et al. Solubilization of fluocinolone acetonide by cosolvents and surfactants for buccal solution preparation. Thai J Pharm Sci. 2018;42(2).

  48. Kiddee W, et al. Intraocular pressure monitoring post intravitreal steroids: a systematic review. Surv Ophthalmol. 2013;58(4):291–310.

    Article  PubMed  Google Scholar 

  49. Jaffe GJ, et al. Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis: thirty-four–week results of a multicenter randomized clinical study. Ophthalmology. 2006;113(6):1020–7.

    Article  PubMed  Google Scholar 

  50. Vafaei SY, et al. Controlled-release drug delivery system based on fluocinolone acetonide–cyclodextrin inclusion complex incorporated in multivesicular liposomes. Pharm Dev Technol. 2015;20(7):775–81.

    Article  CAS  PubMed  Google Scholar 

  51. Alberth M, et al. Lipophilicity, solubility and permeability of loteprednol etabonate: a novel, soft anti-inflammatory steroid. Aust J Biol Sci. 1991;2(2):115–25.

    CAS  Google Scholar 

  52. Comstock TL, DeCory HH. Advances in corticosteroid therapy for ocular inflammation: loteprednol etabonate. Int J Inflamm, 2012;2012.

  53. Rajpal RK, et al. Efficacy and safety of loteprednol etabonate 0.5% gel in the treatment of ocular inflammation and pain after cataract surgery. J Cataract Refract Surg. 2013;39(2):158–67.

    Article  PubMed  Google Scholar 

  54. Pflugfelder SC, et al. A randomized, double-masked, placebo-controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5%, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol. 2004;138(3):444–57.

    Article  CAS  PubMed  Google Scholar 

  55. Noh G, et al. Development and evaluation of a water soluble fluorometholone eye drop formulation employing polymeric micelle. Pharmaceutics. 2018;10(4):208.

    Article  CAS  PubMed Central  Google Scholar 

  56. Miyake K, et al. Nepafenac 0.1% versus fluorometholone 0.1% for preventing cystoid macular edema after cataract surgery. J Cataract Refract Surg. 2011;37(9):1581–8.

    Article  PubMed  Google Scholar 

  57. Jamal KN, Callanan DG. The role of difluprednate ophthalmic emulsion in clinical practice. Clin Ophthalmol. 2009;3:381.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kimura M, et al. Compositions containing difluprednate. 2000, Google Patents.

  59. Korenfeld M. Difluprednate: changing the landscape of ocular pharmacology. Expert Rev Ophthalmol. 2008;3(6):619–25.

    Article  Google Scholar 

  60. Popper TL, et al. Structure-activity relationships of a series of novel topical corticosteroids. J Steroid Biochem. 1987;27(4–6):837–43.

    Article  CAS  PubMed  Google Scholar 

  61. He Y, et al. Structures and mechanism for the design of highly potent glucocorticoids. Cell Res. 2014;24(6):713–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Crim C, Pierre LN, Daley-Yates PT. A review of the pharmacology and pharmacokinetics of inhaled fluticasone propionate and mometasone furoate. Clin Ther. 2001;23(9):1339–54.

    Article  CAS  PubMed  Google Scholar 

  63. Salter M, et al. Pharmacological properties of the enhanced-affinity glucocorticoid fluticasone furoate in vitro and in an in vivo model of respiratory inflammatory disease. Am J Phys Lung Cell Mol Phys. 2007;293(3):L660–7.

    CAS  Google Scholar 

  64. Musson D, Bidgood A, Olejnik O. An in vitro comparison of the permeability of prednisolone, prednisolone sodium phosphate, and prednisolone acetate across the NZW rabbit cornea. J Ocul Pharmacol Ther. 1992;8(2):139–50.

    Article  CAS  Google Scholar 

  65. Thakur A, Kadam RS, Kompella UB. Influence of drug solubility and lipophilicity on transscleral retinal delivery of six corticosteroids. Drug Metab Dispos. 2011;39(5):771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eliott D, Rao PK. Surgical management of intraocular inflammation and infection. 2013: JP Medical Ltd.

  67. Salama AH, Mahmoud AA, Kamel R. A novel method for preparing surface-modified fluocinolone acetonide loaded PLGA nanoparticles for ocular use: in vitro and in vivo evaluations. AAPS PharmSciTech. 2016;17(5):1159–72.

    Article  CAS  PubMed  Google Scholar 

  68. Malclès A, et al. Safety of intravitreal dexamethasone implant (Ozurdex): the SAFODEX study. Incidence and risk factors of ocular hypertension. Retina. 2017;37(7):1352–9.

    Article  PubMed  CAS  Google Scholar 

  69. Kompella U, Kadam RS, Lee VHL. Recent advances in ophthalmic drug delivery. Ther Deliv. 2010;1:435–56.

    Article  CAS  PubMed  Google Scholar 

  70. Yang Y, et al. Intravitreal corticosteroids in diabetic macular edema: pharmacokinetic considerations. Retina. 2015;35(12):2440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. CAS-No, C.C., Bristol-Myers Squibb Company. 2001.

  72. Arvas S, Ocakoglu O, Ozkan S. The capillary blood flow in ischaemic type central retinal vein occlusion: the effect of laser photocoagulation. Acta Ophthalmol Scand. 2002;80:490–4.

    Article  PubMed  Google Scholar 

  73. Chambers WA. Trivaris (triamcinolone acetonide injectable suspension) 80 mg/mL product information, I. Allergan, Editor 2008, Allergan, Inc.

  74. YANG Y, et al. Intravitreal corticosteroids in diabetic macular edema. Retina. 2015;35:2440–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen TH, Hariprasad SM, Raiji V. Update on emerging steroid-based local treatments for noninfectious uveitis. Ophthal Surg, Lasers Imaging Retina. 2018;49(11):828–31.

    Article  Google Scholar 

  76. Tripathi RC, et al. Corticosteroid treatment for inflammatory bowel disease in pediatric patients increases intraocular pressure. Gastroenterology. 1992;102(6):1957–61.

    Article  CAS  PubMed  Google Scholar 

  77. David D, Berkowitz J. Ocular effects of topical and systemic corticosteroids. Lancet. 1969;294(7612):149–51.

    Article  Google Scholar 

  78. Florence AT, Attwood D. The solubility of drugs. In: Florence AT, Attwood D, editors. Physichochemical principles of pharmacy. London: MACMILLAN Press LTD; 1988. p. 153–82.

    Chapter  Google Scholar 

  79. Chaudhari PD, U.S. DESAI. Formulation and evaluation of niosomal in situ gel of prednisolone sodium phosphate for ocular drug delivery. Int J Appl Pharm. 2019;11:97–116.

    Article  CAS  Google Scholar 

  80. Chambless SL, Trocme S. Developments in ocular allergy. Curr Opin Allergy Clin Immunol. 2004;4(5):431–4.

    Article  PubMed  Google Scholar 

  81. Bielory L. Allergic and immunologic disorders of the eye. Part II: ocular allergy. J Allergy Clin Immunol. 2000;106(6):1019–32.

    Article  CAS  PubMed  Google Scholar 

  82. Abelson MB, Schaefer K. Conjunctivitis of allergic origin: immunologic mechanisms and current approaches to therapy. Surv Ophthalmol. 1993;38:115–32.

    Article  PubMed  Google Scholar 

  83. Woods AC. Clinical and experimental observation on the use of ACTH and cortisone in ocular inflammatory disease. Am J Ophthalmol. 1950;33(9):1325–51.

    Article  CAS  PubMed  Google Scholar 

  84. Villanueva JR, Villanueva LR, Navarro MG. Pharmaceutical technology can turn a traditional drug, dexamethasone into a first-line ocular medicine. A global perspective and future trends. Int J Pharm. 2017;516(1–2):342–51.

    Article  CAS  Google Scholar 

  85. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med. 2005;353(16):1711–23.

    Article  CAS  PubMed  Google Scholar 

  86. Jiang CL, et al. The novel strategy of glucocorticoid drug development via targeting nongenomic mechanisms. Steroids. 2015;102:27–31.

    Article  CAS  PubMed  Google Scholar 

  87. Stahn C, Buttgereit F. Genomic and nongenomic effects of glucocorticoids. Nat Rev Rheumatol. 2008;4(10):525.

    Article  CAS  Google Scholar 

  88. Vandewalle J, et al. Therapeutic mechanisms of glucocorticoids. Trends Endocrinol Metab. 2018;29:42–54.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang X, et al. Glucocorticoids: structure, signaling and molecular mechanisms in the treatment of diabetic retinopathy and diabetic macular edema. Curr Mol Med. 2014;14:376–84.

    Article  CAS  PubMed  Google Scholar 

  90. Idrees F, et al. A review of anterior segment dysgeneses. Surv Ophthalmol. 2006;51(3):213–31.

    Article  PubMed  Google Scholar 

  91. McGhee C. Pharmacokinetics of ophthalmic corticosteroids. Br J Ophthalmol. 1992;76(11):681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pan Q, et al. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J Control Release. 2015;201:32–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ciulla TA, et al. Corticosteroids in posterior segment disease: an update on new delivery systems and new indications. Curr Opin Ophthalmol. 2004;15(3):211–20.

    Article  PubMed  Google Scholar 

  94. Bachu R, et al. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10(1):28.

    Article  PubMed Central  CAS  Google Scholar 

  95. Gaudana R, et al. Ocular drug delivery. AAPS J. 2010;12(3):348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Baranowski P, Karolewicz B, Gajda M, Pluta J. Ophthalmic drug dosage forms: Characterisation and research methods. Sci World J. 2014(2014):1–14.

  97. Guy YJ, Friedman DI. Suspension of loteprednol etabonate for ear, eye, or nose treatment. 1996, Google Patents.

  98. Ahmed I. The noncorneal route in ocular drug delivery, in Ophthalmic drug delivery systems. 2003, CRC Press. p. 356–385.

  99. Kompella U, Vooturi S, Kadam R. Topical ocular drug delivery, 2013, Google Patents.

  100. Gunda S, et al. Barriers in ocular drug delivery, in Ocular Transporters in Ophthalmic Diseases and Drug Delivery. 2008, Springer. p. 399–413.

  101. Lang JC, Stiemke MM. Biological barriers to ocular delivery. Ocular Therapeutics and Drug Delivery. A Multi-disciplinary Approach, 1995: p. 51–132.

  102. Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27(7):558–62.

    Article  CAS  PubMed  Google Scholar 

  103. Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev. 1995;16(1):39–43.

    Article  CAS  Google Scholar 

  104. Lee YH, Kompella UB, Lee VH. Systemic absorption pathways of topically applied beta adrenergic antagonists in the pigmented rabbit. Exp Eye Res. 1993:341–9.

  105. Vooturi S, et al. Effect of particle size and viscosity of suspensions on topical ocular bioavailability of budesonide, a corticosteroid. J Ocul Pharmacol Ther. 2020;36:1–6.

    Article  CAS  Google Scholar 

  106. Yang C-q, Sun W, Gu Y-s. A clinical study of the efficacy of topical corticosteroids on dry eye. J Zhejiang Univ Sci B. 2006;7(8):675–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Meehan K, Vollmer L, Sowka J. Intraocular pressure elevation from topical difluprednate use. Optometry-J Am Optometric Assoc. 2010;81(12):658–62.

    Article  Google Scholar 

  108. Jones R, Rhee DJ. Corticosteroid-induced ocular hypertension and glaucoma: a brief review and update of the literature. Curr Opin Ophthalmol. 2006;17:163–7.

    PubMed  Google Scholar 

  109. Abdelkader H, Alany RG. Controlled and continuous release ocular drug delivery systems: pros and cons. Curr Drug Deliv. 2012;9(4):421–30.

    Article  CAS  PubMed  Google Scholar 

  110. McCluskey PJ, Towle HM, Lightman S. Management of chronic uveitis. BMJ. 2000;320(7234):555–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Feiler DL, et al. Resolution of noninfectious uveitic cystoid macular edema with topical difluprednate. Retina. 2017;37(5):844–50.

    Article  PubMed  Google Scholar 

  112. Sherif A Gaballa OHEG, Moharram H, Abdelkader H. Preparation and evaluation of cubosomes/cubosomal gels for ocular delivery of beclomethasone dipropionate for management of uveitis. Pharmaceutics Researches, 2020.

  113. Hamashige S, Potts AM. The penetration of cortisone and hydrocortisone into the ocular structures. Am J Ophthalmol. 1955;40(5):211–6.

    Article  CAS  PubMed  Google Scholar 

  114. TANIGUCHI K, et al. Efficacy of a liposome preparation of anti-inflammatory steroid as an ocular drug-delivery system. J Pharmacobio-Dynam. 1988;11(1):39–46.

    Article  CAS  Google Scholar 

  115. Gaballa SA, El Garhy OH, Abdelkader H. Cubosomes: composition, preparation, and drug delivery applications. J Adv Biomed Pharm Sci. 2020;3(1):1–9.

    Google Scholar 

  116. Al-Amin M, et al. Dexamethasone loaded liposomes by thin-film hydration and microfluidic procedures: formulation challenges. Int J Mol Sci. 2020;21(5):1611.

    Article  CAS  PubMed Central  Google Scholar 

  117. Raizman M. Corticosteroid therapy of eye disease: fifty years later. Arch Ophthalmol. 1996;114(8):1000–1.

    Article  CAS  PubMed  Google Scholar 

  118. Hughes PM, et al. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57(14):2010–32.

    Article  CAS  PubMed  Google Scholar 

  119. Pepić I, et al. A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J Pharm Sci. 2010;99(10):4317–25.

    Article  PubMed  CAS  Google Scholar 

  120. Galloway NR, et al.. Basic anatomy and physiology of the eye, in Common Eye Diseases and their Management. 2016, Springer. p. 7–16.

  121. Cox WV, Kupferman A, Leibowitz HM. Topically applied steroids in corneal disease: II. The role of drug vehicle in stromal absorption of dexamethasone. Arch Ophthalmol. 1972;88(5):549–52.

    Article  CAS  PubMed  Google Scholar 

  122. Green K, DOWNS SJ. Prednisolone phosphate penetration into and through the cornea. Invest Ophthalmol Vis Sci. 1974;13(4):316–9.

    CAS  Google Scholar 

  123. Leibowitz HM, Kupferman A. Kinetics of topically administered prednisolone acetate: optimal concentration for treatment of inflammatory keratitis. Arch Ophthalmol. 1976;94(8):1387–9.

    Article  CAS  PubMed  Google Scholar 

  124. Flint GR, Morton DJ. Effect of derivatization of the bioavailability of ophthalmic steroids: development of an in vitro method of evaluation. Arch Ophthalmol. 1984;102(12):1808–9.

    Article  CAS  PubMed  Google Scholar 

  125. McGhee C, et al. Penetration of synthetic corticosteroids into human aqueous humour. Eye. 1990;4(3):526–30.

    Article  PubMed  Google Scholar 

  126. Kristinsson JK, et al. Dexamethasone-cyclodextrin-polymer co-complexes in aqueous eye drops. Aqueous humor pharmacokinetics in humans. Invest Ophthalmol Vis Sci. 1996;37(6):1199–203.

    CAS  PubMed  Google Scholar 

  127. Becker B. Intraocular pressure response to topical corticosteroids. Invest Ophthalmol Vis Sci. 1965;4(2):198–205.

    CAS  Google Scholar 

  128. Hadayer A, Schaal S. Delivery of steroids into the eye for the treatment of macular edema. Exp Opin Drug Deliv. 2016;13(8):1083–91.

    Article  CAS  Google Scholar 

  129. Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Exp Opin Drug Deliv. 2008;5(5):567–81.

    Article  CAS  Google Scholar 

  130. Cunha-Vaz J. The blood–retinal barrier in retinal disease. J Blood–Retinal Barrier Retinal Dis 2009.

  131. Waite D, et al. Posterior drug delivery via periocular route: challenges and opportunities. Ther Deliv. 2017;8(8):685–99.

    Article  CAS  PubMed  Google Scholar 

  132. Kaufman HE, et al. Effect of the herpes simplex virus genome on the response of infection to corticosteroids. Am J Ophthalmol. 1985;100(1):114–8.

    Article  CAS  PubMed  Google Scholar 

  133. Urban RC Jr, Cotlier E. Corticosteroid-induced cataracts. Surv Ophthalmol. 1986;31(2):102–10.

    Article  CAS  PubMed  Google Scholar 

  134. De Nijs R. Glucocorticoid-induced osteoporosis: a review on pathophysiology and treatment options. Minerva Med. 2008;99(1):23.

    PubMed  Google Scholar 

  135. Eisenstadt W, Cohen E. Osteoporosis and compression fractures from prolonged cortisone and corticotropin therapy. Ann Allergy. 1955;13(3):252.

    CAS  PubMed  Google Scholar 

  136. Boland EW. Nonspecific anti-inflammatory agents—some notes on their practical application, especially in rheumatic disorders. California Med. 1964;100(3):145.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Stanbury RM, Graham EM. Systemic corticosteroid therapy—side effects and their management. Br J Ophthalmol. 1998;82(6):704–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Livanou T, Ferriman D, James V. Recovery of hypothalamo-pituitary-adrenal function after corticosteroid therapy. Lancet. 1967;290(7521):856–9.

    Article  Google Scholar 

  139. Buchman AL. Side effects of corticosteroid therapy. J Clin Gastroenterol. 2001;33(4):289–94.

    Article  CAS  PubMed  Google Scholar 

  140. Leopold IH, Kroman HS. Methyl-and fluoro-substituted prednisolones in the blood and aqueous humor of the rabbit: concentrations. AMA Arch Ophthalmol. 1960;63(6):943–7.

    Article  CAS  Google Scholar 

  141. Hyndiuk RA, Reagan MG. Radioactive depot-corticosteroid penetration into monkey ocular tissue: I. Retrobulbar and systemic administration. Arch Ophthalmol. 1968;80(4):499–503.

    Article  CAS  PubMed  Google Scholar 

  142. Barza M. Factors affecting the intraocular penetration of antibiotics. The influence of route, inflammation, animal species and tissue pigmentation. Scand J Infect Dis Suppl. 1978;14:151–9.

    CAS  Google Scholar 

  143. Tchernitchiv A, et al. Glucocorticoid localization by radioautography in the rabbit eye following systemic administration of 3H-dexamethasone. Invest Ophthalmol Vis Sci. 1980;19(10):1231–6.

    CAS  PubMed  Google Scholar 

  144. Hernandez M, et al. Corneal-conjunctival uptake of topical 3H-dexamethasone in the rabbit eye. Invest Ophthalmol Vis Sci. 1981;20(1):120–3.

    CAS  PubMed  Google Scholar 

  145. Sherif Z, Pleyer U. Corticosteroids in ophthalmology: past–present–future. Ophthalmologica. 2002;216(5):305–15.

    Article  PubMed  Google Scholar 

  146. Yu W-K, et al. Ocular adnexal IgG4-related disease: clinical features, outcome, and factors associated with response to systemic steroids. Jpn J Ophthalmol. 2015;59(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  147. Wakefield D, McCluskey P, Penny R. Intravenous pulse methylprednisolone therapy in severe inflammatory eye disease. Arch Ophthalmol. 1986;104(6):847–51.

    Article  CAS  PubMed  Google Scholar 

  148. Sulaiman RS, Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in the eye. Steroids. 2018;133:60–6.

    Article  CAS  PubMed  Google Scholar 

  149. McGhee CN, Dean S, Danesh-Meyer H. Locally administered ocular corticosteroids. Drug Saf. 2002;25(1):33–55.

    Article  CAS  PubMed  Google Scholar 

  150. Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  151. Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Exp Opin Drug Deliv. 2004;1(1):99–114.

    Article  Google Scholar 

  152. Agban Y, et al. Depot formulations to sustain periocular drug delivery to the posterior eye segment. Drug Discov Today. 2019;24(8):1458–69.

    Article  CAS  PubMed  Google Scholar 

  153. Olsen TW, et al. Human sclera: thickness and surface area. Am J Ophthalmol. 1998;125(2):237–41.

    Article  CAS  PubMed  Google Scholar 

  154. Olsen TW, et al. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest Ophthalmol Vis Sci. 1995;36(9):1893–903.

    CAS  PubMed  Google Scholar 

  155. Ambati J, et al. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci. 2000;41(5):1181–5.

    CAS  PubMed  Google Scholar 

  156. Wen H, Hao J, Li SK. Influence of permeant lipophilicity on permeation across human sclera. Pharm Res. 2010;27(11):2446–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Janoria KG, et al. Novel approaches to retinal drug delivery. Exp Opin Drug Deliv. 2007;4(4):371–88.

    Article  CAS  Google Scholar 

  158. Castellarin A, Pieramici DJ. Anterior segment complications following periocular and intraocular injections. Ophthalmol Clin N Am. 2004;17(4):583–90 vii.

    Article  Google Scholar 

  159. Akduman L, et al. Treatment of persistent glaucoma secondary to periocular corticosteroids. Am J Ophthalmol. 1996;122(2):275–7.

    Article  CAS  PubMed  Google Scholar 

  160. Nozik RA. Orbital rim fat atrophy after repository periocular corticosteroid injection. Am J Ophthalmol. 1976;82(6):928–30.

    Article  CAS  PubMed  Google Scholar 

  161. Weijtens O, et al. Dexamethasone concentration in the subretinal fluid after a subconjunctival injection, a peribulbar injection, or an oral dose. Ophthalmology. 2000;107(10):1932–8.

    Article  CAS  PubMed  Google Scholar 

  162. Weijtens O, et al. High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. Am J Ophthalmol. 1999;128(2):192–7.

    Article  CAS  PubMed  Google Scholar 

  163. Kompella UB, Bandi N, Ayalasomayajula SP. Subconjunctival nano-and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci. 2003;44(3):1192–201.

    Article  PubMed  Google Scholar 

  164. Leibowitz HM, Kupferman A. Periocular injection of corticosteroids: an experimental evaluation of its role in the treatment of corneal inflammation. Arch Ophthalmol. 1977;95(2):311–4.

    Article  CAS  PubMed  Google Scholar 

  165. Conrad JM, Robinson JR. Mechanisms of anterior segment absorption of pilocarpine following subconjunctival injection in albino rabbits. J Pharm Sci. 1980;69(8):875–84.

    Article  CAS  PubMed  Google Scholar 

  166. Amrite AC, Edelhauser HF, Kompella UB. Modeling of corneal and retinal pharmacokinetics after periocular drug administration. Invest Ophthalmol Vis Sci. 2008;49(1):320–32.

    Article  PubMed  Google Scholar 

  167. Hosseini K, et al. Pharmacokinetic study of dexamethasone disodium phosphate using intravitreal, subconjunctival, and intravenous delivery routes in rabbits. J Ocul Pharmacol Ther. 2008;24(3):301–8.

    Article  CAS  PubMed  Google Scholar 

  168. McCartney H, et al. An autoradiographic study of the penetration of subconjunctivally injected hydrocortisone into the normal and inflamed rabbit eye. Invest Ophthalmol Vis Sci. 1965;4(3):297–302.

    CAS  Google Scholar 

  169. Holmberg BJ, Maggs DJ. The use of corticosteroids to treat ocular inflammation. Vet Clinics: Small Anim Pract. 2004;34(3):693–705.

    Google Scholar 

  170. Pendergast SD, Eliott D, Machemer R. Retinal toxic effects following inadvertent intraocular injection of Celestone Soluspan. Arch Ophthalmol. 1995;113(10):1230–1.

    Article  CAS  PubMed  Google Scholar 

  171. Fischer C. Granuloma formation associated with subconjunctival injection of a corticosteroid in dogs. J Am Vet Med Assoc. 1979;174(10):1086–8.

    CAS  PubMed  Google Scholar 

  172. Herrero-Vanrell R, et al. Sustained back of the eye delivery following sub-tenon administration of dexamethasone-loaded PLGA microspheres in rabbits. Invest Ophthalmol Vis Sci. 2012;53(14):477.

    Google Scholar 

  173. Das D, Serasiya S, Misra D. Complications and safety profile of posterior sub-tenon triamcinolone injections in sclero-uveitis cases in a tertiary institute of northeast India. Adv Ophthalmol Vis Syst. 2018;8(6):231–2.

    Google Scholar 

  174. Lafranco Dafflon M, et al. Posterior sub-Tenon’s steroid injections for the treatment of posterior ocular inflammation: indications, efficacy and side effects. Graefes Arch Clin Exp Ophthalmol. 1999;237(4):289–95.

    Article  CAS  PubMed  Google Scholar 

  175. Cardillo JA, et al. Comparison of intravitreal versus posterior sub–Tenon’s capsule injection of triamcinolone acetonide for diffuse diabetic macular edema. Ophthalmology. 2005;112(9):1557–63.

    Article  PubMed  Google Scholar 

  176. Kim MW, et al. Effect of posterior subtenon triamcinolone acetonide injection on diabetic macular edema refractory to intravitreal bevacizumab injection. Korean J Ophthalmol. 2016;30(1):25–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Weiss JL, Deichman CB. A comparison of retrobulbar and periocular anesthesia for cataract surgery. Arch Ophthalmol. 1989;107(1):96–8.

    Article  CAS  PubMed  Google Scholar 

  178. Ripart J, et al. Peribulbar versus retrobulbar anesthesia for ophthalmic surgeryan anatomical comparison of extraconal and intraconal injections. Anesthesiology. 2001;94(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  179. Herschler J. Intractable intraocular hypertension induced by repository triamcinolone acetonide. Am J Ophthalmol. 1972;74(3):501–4.

    Article  CAS  PubMed  Google Scholar 

  180. Olsen TW, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006;142(5):777–787. e2.

    Article  CAS  PubMed  Google Scholar 

  181. Soiberman U, et al. Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomaterials. 2017;125:38–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gillies MC, et al. Safety of an intravitreal injection of triamcinolone: results from a randomized clinical trial. Arch Ophthalmol. 2004;122(3):336–40.

    Article  CAS  PubMed  Google Scholar 

  183. Hussain N, et al. Combination therapy of intravitreal triamcinolone and photodynamic therapy with verteporfin for subfoveal choroidal neovascularization. Indian J Ophthalmol. 2006;54(4):247.

    Article  PubMed  Google Scholar 

  184. Hartman RR, Kompella UB. Intravitreal, subretinal, and suprachoroidal injections: evolution of microneedles for drug delivery. J Ocul Pharmacol Ther. 2018;34(1–2):141–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Olsen TW, et al. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Invest Ophthalmol Vis Sci. 2011;52(7):4749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tetz M, Rizzo S, Augustin AJ. Safety of submacular suprachoroidal drug administration via a microcatheter: retrospective analysis of European treatment results. Ophthalmologica. 2012;227(4):183–9.

    Article  CAS  PubMed  Google Scholar 

  187. Gilger BC, et al. Long-term outcome after implantation of a suprachoroidal cyclosporine drug delivery device in horses with recurrent uveitis. Vet Ophthalmol. 2010;13(5):294–300.

    Article  CAS  PubMed  Google Scholar 

  188. Rai UDJ, et al. The suprachoroidal pathway: a new drug delivery route to the back of the eye. Drug Discov Today. 2015;20(4):491–5.

    Article  CAS  Google Scholar 

  189. Seiler GS, et al. Effect and distribution of contrast medium after injection into the anterior suprachoroidal space in ex vivo eyes. Invest Ophthalmol Vis Sci. 2011;52(8):5730–6.

    Article  PubMed  Google Scholar 

  190. Clearside Biomedical, I. Clearside Biomedical revises NDA resubmission timeline and XIPERE™ commercial partnership with Bausch Health. 2020 [cited August 2020.

  191. Edelhauser HF, et al. Intraocular distribution and targeting of triamcinolone acetonide suspension administered into the suprachoroidal space. Invest Ophthalmol Vis Sci. 2014;55(13):5259.

    Google Scholar 

  192. Goldstein DA, et al. Suprachoroidal corticosteroid administration: a novel route for local treatment of noninfectious uveitis. Translat Vision Sci Technol. 2016;5(6):14.

    Article  Google Scholar 

  193. Patel SR, et al. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28(1):166–76.

    Article  CAS  PubMed  Google Scholar 

  194. Patel SR, et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2012;53(8):4433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gilger BC, et al. Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles. Invest Ophthalmol Vis Sci. 2013;54(4):2483–92.

    Article  CAS  PubMed  Google Scholar 

  196. Kuriakose T, et al. Intracameral amphotericin B injection in the management of deep keratomycosis. Cornea. 2002;21(7):653–6.

    Article  PubMed  Google Scholar 

  197. Shah TJ, Conway MD, Peyman GA. Intracameral dexamethasone injection in the treatment of cataract surgery induced inflammation: design, development, and place in therapy. Clin Ophthalmol. 2018;12:2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Tan DT, et al. Randomized clinical trial of a new dexamethasone delivery system (Surodex) for treatment of post-cataract surgery inflammation. Ophthalmology. 1999;106(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  199. Wang B, et al. Efficacy and safety of intracameral triamcinolone acetonide to control postoperative inflammation after phacotrabeculectomy. J Cataract Refract Surg. 2013;39(11):1691–7.

    Article  PubMed  Google Scholar 

  200. Simaroj P, Sinsawad P, Lekhanont K. Effects of intracameral triamcinolone and gentamicin injections following cataract surgery. J Med Assoc Thail. 2011;94(7):819.

    Google Scholar 

  201. Mamalis N, et al. Toxic anterior segment syndrome. J Cataract Refract Surg. 2006;32(2):324–33.

    Article  PubMed  Google Scholar 

  202. Cunningham MA, Edelman JL, Kaushal S. Intravitreal steroids for macular edema: the past, the present, and the future. Surv Ophthalmol. 2008;53(2):139–49.

    Article  PubMed  Google Scholar 

  203. Doshi RR, Bakri SJ, Fung AE. Intravitreal injection technique. in Seminars in ophthalmology. 2011. Taylor & Francis.

  204. Mitra AK, Anand BS, Duvvuri S. Drug delivery to the eye. Adv Organ Biol. 2005;10:307–51.

    Article  Google Scholar 

  205. Durairaj C, et al. Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure–pharmacokinetic relationships (QSPKR). Pharm Res. 2009;26(5):1236.

    Article  CAS  PubMed  Google Scholar 

  206. Beer PM, et al. Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. Ophthalmology. 2003;110(4):681–6.

    Article  PubMed  Google Scholar 

  207. Graham RO, Peyman GA. Intravitreal injection of dexamethasone: treatment of experimentally induced endophthalmitis. Arch Ophthalmol. 1974;92(2):149–54.

    Article  CAS  PubMed  Google Scholar 

  208. Tano Y, Chandler D, Machemer R. Treatment of intraocular proliferation with intravitreal injection of triamcinolone acetonide. Am J Ophthalmol. 1980;90(6):810–6.

    Article  CAS  PubMed  Google Scholar 

  209. Mansoor S, Kuppermann BD, Kenney MC. Intraocular sustained-release delivery systems for triamcinolone acetonide. Pharm Res. 2009;26(4):770–84.

    Article  CAS  PubMed  Google Scholar 

  210. Zacharias LC, et al. Assessment of the differences in pharmacokinetics and pharmacodynamics between four distinct formulations of triamcinolone acetonide. Retina. 2013;33(3):522–31.

    Article  CAS  PubMed  Google Scholar 

  211. Kuppermann BD, Zacharias LC, Kenney MC. Steroid differentiation: the safety profile of various steroids on retinal cells in vitro and their implications for clinical use (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2014;112:116.

    PubMed  PubMed Central  Google Scholar 

  212. Thackaberry EA, et al. The safety evaluation of long-acting ocular delivery systems. Drug Discov Today. 2019;24(8):1539–50.

    Article  CAS  PubMed  Google Scholar 

  213. Razeghinejad MR, Katz LJ. Steroid-induced iatrogenic glaucoma. Ophthalmic Res. 2012;47(2):66–80.

    Article  CAS  PubMed  Google Scholar 

  214. Lee D. Intraocular implants for the treatment of autoimmune uveitis. J Funct Biomater. 2015;6(3):650–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chang-Lin J-E, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci. 2011;52(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  216. Haghjou N, Soheilian M, Abdekhodaie MJ. Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalmic Vision Res. 2011;6(4):317.

    CAS  Google Scholar 

  217. Cao Y, et al. Recent advances in intraocular sustained-release drug delivery devices. Drug Discov Today. 2019;24(8):1694–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Jaffe GJ, et al. Fluocinolone acetonide sustained drug delivery device to treat severe uveitis. Ophthalmology. 2000;107(11):2024–33.

    Article  CAS  PubMed  Google Scholar 

  219. Driot J-Y, et al. Ocular pharmacokinetics of fluocinolone acetonide after Retisert™ intravitreal implantation in rabbits over a 1-year period. J Ocul Pharmacol Ther. 2004;20(3):269–75.

    Article  CAS  PubMed  Google Scholar 

  220. Alimera Sciences, I, ILUVIEN® (fluocinolone acetonide intravitreal implant) 0.19 mg product information, I. Alimera Sciences, Editor 2019, Alimera Sciences, Inc.

  221. Kane FE, Green KE. Ocular pharmacokinetics of fluocinolone acetonide following Iluvien implantation in the vitreous humor of rabbits. J Ocul Pharmacol Ther. 2015;31(1):11–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Sanford M. Fluocinolone acetonide intravitreal implant (Iluvien®). Drugs. 2013;73(2):187–93.

    Article  CAS  PubMed  Google Scholar 

  223. Parekh A, et al. Risk factors associated with intraocular pressure increase in patients with uveitis treated with the fluocinolone acetonide implant. JAMA Ophthalmol. 2015;133(5):568–73.

    Article  PubMed  Google Scholar 

  224. Cholkar K, et al. Novel strategies for anterior segment ocular drug delivery. J Ocul Pharmacol Ther. 2013;29(2):106–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tamura H, et al. Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest Ophthalmol Vis Sci. 2005;46(4):1440–4.

    Article  PubMed  Google Scholar 

  226. Peeters L, et al. Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci. 2005;46(10):3553–61.

    Article  PubMed  Google Scholar 

  227. Thakur SS, et al. Intravitreal drug delivery in retinal disease: are we out of our depth? Exp Opin Drug Deliv. 2014;11(10):1575–90.

    Article  CAS  Google Scholar 

  228. Thakur A, Kadam R, Kompella UB. Trabecular meshwork and lens partitioning of corticosteroids: implications for elevated intraocular pressure and cataracts. Arch Ophthalmol. 2011;129(7):914–20.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Prata AI, Coimbra P, Pina ME. Preparation of dexamethasone ophthalmic implants: a comparative study of in vitro release profiles. Pharm Dev Technol. 2018;23(3):218–24.

    Article  CAS  PubMed  Google Scholar 

  230. Schmit-Eilenberger VK. A novel intravitreal fluocinolone acetonide implant (Iluvien®) in the treatment of patients with chronic diabetic macular edema that is insufficiently responsive to other medical treatment options: a case series. Clin Ophthalmol. 2015;9:801.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Abraldes MJ, Fernández M, Gómez-Ulla F. Intravitreal triamcinolone in diabetic retinopathy. Curr Diabetes Rev. 2009;5(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  232. Renfro L, Snow JS. Ocular effects of topical and systemic steroids. Dermatol Clin. 1992;10(3):505–12.

    Article  CAS  PubMed  Google Scholar 

  233. Krupin T, et al. Uveitis in association with topically administered corticosteroid. Am J Ophthalmol. 1970;70(6):883–5.

    Article  CAS  PubMed  Google Scholar 

  234. Armaly MF. Effect of corticosteroids on intraocular pressure and fluid dynamics: III. Changes in visual function and pupil size during topical dexamethasone application. Arch Ophthalmol. 1964;71(5):636–44.

    Article  CAS  PubMed  Google Scholar 

  235. Miller D, Peczon JD, Whitworth CG. Corticosteroids and functions in the anterior segment of the eye. Am J Ophthalmol. 1965;59(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  236. Fel A, Aslangul E, Le CJ. Eye and corticosteroid’s use. Presse Medicale (Paris, France: 1983). 2012;41(4):414–21.

    Article  Google Scholar 

  237. Becker B. The side effects of corticosteroids. Invest Ophthalmol Vis Sci. 1964;3(5):492–7.

    CAS  Google Scholar 

  238. Haimovici R, et al. Risk factors for central serous chorioretinopathy: a case–control study. Ophthalmology. 2004;111(2):244–9.

    Article  PubMed  Google Scholar 

  239. Aulakh R, Singh S. Strategies for minimizing corticosteroid toxicity: a review. Indian J Pediatr. 2008;75(10):1067–73.

    Article  PubMed  Google Scholar 

  240. Salek SS, et al. Periocular triamcinolone acetonide injections for control of intraocular inflammation associated with uveitis. Ocul Immunol Inflamm. 2013;21(4):257–63.

    Article  CAS  PubMed  Google Scholar 

  241. Campochiaro PA, et al. Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology. 2012;119(10):2125–32.

    Article  PubMed  Google Scholar 

  242. Goñi FJ, et al. Elevated intraocular pressure after intravitreal steroid injection in diabetic macular edema: monitoring and management. Ophthalmol Therapy. 2016;5(1):47–61.

    Article  Google Scholar 

  243. Fracs RW, Fracs PB. Intravitreal triamcinolone and elevated intraocular pressure. Aust N Z J Ophthalmol. 1999;27(6):431–2.

    Article  Google Scholar 

  244. Mansour A, et al. Periocular corticosteroids in diabetic papillopathy. Eye. 2005;19(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  245. Jamrozy-Witkowska A, et al. Complications of intravitreal injections-own experience. Klin Ocz. 2011;113(4–6):127–31.

    Google Scholar 

  246. Gopal L, Bhende M, Sharma T. Vitrectomy for accidental intraocular steroid injection. Retina (Philadelphia, Pa). 1995;15(4):295–9.

    Article  CAS  Google Scholar 

  247. Rahman I, Ataullah S. Retrobulbar hemorrhage after sub-Tenon’s anesthesia. J Cataract Refract Surg. 2004;30(12):2636–7.

    Article  PubMed  Google Scholar 

  248. Purdy EP, Ajimal GS. Vision loss after lumbar epidural steroid injection. Anesth Analg. 1998;86(1):119–22.

    CAS  PubMed  Google Scholar 

  249. Fogla R, Rao SK, Biswas J. Avoiding conjunctival necrosis after periocular depot corticosteroid injection. J Cataract Refract Surg. 2000;26(2):163–4.

    Article  CAS  PubMed  Google Scholar 

  250. Jusufbegovic D, Schaal S. Quiescent herpes simplex keratitis reactivation after intravitreal injection of dexamethasone implant. Retinal Cases Brief Reports. 2017;11(4):296–7.

    Article  PubMed  Google Scholar 

  251. Fassbender Adeniran JM, Jusufbegovic D, Schaal S. Common and rare ocular side-effects of the dexamethasone implant. Ocul Immunol Inflamm. 2017;25(6):834–40.

    Article  CAS  PubMed  Google Scholar 

  252. Smithen LM, et al. Intravitreal triamcinolone acetonide and intraocular pressure. Am J Ophthalmol. 2004;138(5):740–3.

    Article  CAS  PubMed  Google Scholar 

  253. Garrott HM, Walland MJ. Clinical case notes: glaucoma from topical corticosteroids to the eyelids. Clin Exp Ophthalmol. 2004;32(2):224–6.

    Article  PubMed  Google Scholar 

  254. Garbe E, et al. Inhaled and nasal glucocorticoids and the risks of ocular hypertension or open-angle glaucoma. Jama. 1997;277(9):722–7.

    Article  CAS  PubMed  Google Scholar 

  255. Beverstock A, Kelly A. Severe acute ocular hypertension following pulsed methylprednisolone for juvenile idiopathic arthritis. BMJ Case Reports CP. 2019;12(5):e229803.

    Article  Google Scholar 

  256. Covell LL. Glaucoma induced by systemic steroid therapy. Am J Ophthalmol. 1958;45(1):108–9.

    Article  CAS  PubMed  Google Scholar 

  257. Fitzgerald LA, et al. Under pressure: an ocular complication of oral corticosteroid therapy. BMJ Case Reports. 2012;2012:bcr2012006955.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Armaly MF. The heritable nature of dexamethasone-induced ocular hypertension. Arch Ophthalmol. 1966;75(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  259. Armaly M, Becker B. Intraocular pressure response to topical corticosteroids. in Fed Proc 1965.

  260. Becker B, Hahn KA. Topical corticosteroids and heredity in primary open-angle glaucoma. Am J Ophthalmol. 1964;57(4):543–51.

    Article  CAS  PubMed  Google Scholar 

  261. Armaly MF. Effect of corticosteroids on intraocular pressure and fluid dynamics: I. The effect of dexamethasone* in the normal eye. Arch Ophthalmol. 1963;70(4):482–91.

    Article  CAS  PubMed  Google Scholar 

  262. Becker B, Mills DW. Elevated intraocular pressure following corticosteroid eye drops. Jama. 1963;185(11):884–6.

    Article  CAS  PubMed  Google Scholar 

  263. Becker B, et al. Intraocular pressure and its response to topical corticosteroids in diabetes. Arch Ophthalmol. 1966;76(4):477–83.

    Article  CAS  PubMed  Google Scholar 

  264. Clark AF, et al. Dexamethasone-induced ocular hypertension in perfusion-cultured human eyes. Invest Ophthalmol Vis Sci. 1995;36(2):478–89.

    CAS  PubMed  Google Scholar 

  265. Hernandez MR, et al. Glucocorticoid target cells in human outflow pathway: autopsy and surgical specimens. Invest Ophthalmol Vis Sci. 1983;24(12):1612–6.

    CAS  PubMed  Google Scholar 

  266. Weinreb R, Cotlier E, Yue BY. The extracellular matrix and its modulation in the trabecular meshwork. Surv Ophthalmol. 1996;40(5):379–90.

    Article  Google Scholar 

  267. Clark AF. Basic sciences in clinical glaucoma: steroids, ocular hypertension, and glaucoma. J Glaucoma. 1995;4(5):354-369.

    Article  Google Scholar 

  268. Lewis D, Symons A, Ancill R. The stabilization-lysis action of anti-inflammatory steroids on lysosomes. J Pharm Pharmacol. 1970;22(12):902–8.

    Article  CAS  PubMed  Google Scholar 

  269. Kinoshita S, et al. Marked intraocular pressure response to instillation of corticosteroids in children. Am J Ophthalmol. 1991;112(4):450–4.

    Article  PubMed  Google Scholar 

  270. Spaeth GL, Rodrigues MM, Weinreb S. Steroid-induced glaucoma: A. Persistent elevation of intraocular pressure B Histopathological aspects. Trans Am Ophthalmol Soc. 1977;75:353.

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Smith C. Corticosteroid glaucoma: a summary and review of the literature. Am J Med Sci. 1966;252:239–44.

    Article  CAS  PubMed  Google Scholar 

  272. Pleyer U, Ursell PG, Rama P. Intraocular pressure effects of common topical steroids for post-cataract inflammation: are they all the same? Ophthalmol Therapy. 2013;2:55–72.

    Article  Google Scholar 

  273. Lam DS, et al. Ocular hypertensive and anti-inflammatory responses to different dosages of topical dexamethasone in children: a randomized trial. Clin Exp Ophthalmol. 2005;33(3):252–8.

    Article  PubMed  Google Scholar 

  274. Kwok AK, et al. Ocular-hypertensive response to topical steroids in children. Ophthalmology. 1997;104(12):2112–6.

    Article  CAS  PubMed  Google Scholar 

  275. Mindel JS, et al. Comparative ocular pressure elevation by medrysone, fluorometholone, and dexamethasone phosphate. Arch Ophthalmol. 1980;98(9):1577–8.

    Article  CAS  PubMed  Google Scholar 

  276. Francois J. Corticosteroid glaucoma. Ann Ophthalmol. 1977;9(9):1075–80.

    CAS  PubMed  Google Scholar 

  277. Weinreb R, et al. Acute effects of dexamethasone on intraocular pressure in glaucoma. Invest Ophthalmol Vis Sci. 1985;26(2):170–5.

    CAS  PubMed  Google Scholar 

  278. Podos SM, Becker B, Morton WR. High myopia and primary open-angle glaucoma. Am J Ophthalmol. 1966;62(6):1039–43.

    Article  Google Scholar 

  279. Gaston H, et al. Steroid responsiveness in connective tissue diseases. Br J Ophthalmol. 1983;67(7):487–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Muchtar S, et al. Ex-vivo permeation study of indomethacin from a submicron emulsion through albino rabbit cornea. J Control Release. 1997;44(1):55–64.

    Article  CAS  Google Scholar 

  281. Cantrill HL, et al. Comparison of in vitro potency of corticosteroids with ability to raise intraocular pressure. Am J Ophthalmol. 1975;79(6):1012–7.

    Article  CAS  PubMed  Google Scholar 

  282. Nuyen B, Weinreb RN, Robbins SL. Steroid-induced glaucoma in the pediatric population. J Am Assoc Pediatr Ophthalmol Strabismus. 2017;21(1):1–6.

    Article  Google Scholar 

  283. Donnenfeld ED, et al. A multicenter randomized controlled fellow eye trial of pulse-dosed difluprednate 0.05% versus prednisolone acetate 1% in cataract surgery. Am J Ophthalmol. 2011;152(4):609–617. e1.

    Article  PubMed  Google Scholar 

  284. Herschler J. Increased intraocular pressure induced by repository corticosteroids. Am J Ophthalmol. 1976;82(1):90–3.

    Article  CAS  PubMed  Google Scholar 

  285. Kalina PH, Erie JC, Rosenbaum L. Biochemical quantification of triamcinolone in subconjunctival depots. Arch Ophthalmol. 1995;113(7):867–9.

    Article  CAS  PubMed  Google Scholar 

  286. Whitcup SM, et al. Pharmacology of corticosteroids for diabetic macular edema. Invest Ophthalmol Vis Sci. 2018;59(1):1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Parente L. Deflazacort: therapeutic index, relative potency and equivalent doses versus other corticosteroids. BMC Pharmacol Toxicol. 2017;18(1):1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Becker B. Diabetes mellitus and primary open-angle glaucoma: the XXVII Edward Jackson Memorial Lecture. Am J Ophthalmol. 1971;71(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  289. Wilson M. Epidemiology of chronic open-angle glaucoma. Glaucomas. 1996;2:753–68.

    Google Scholar 

  290. Haas JS, Nootens RH. Glaucoma secondary to benign adrenal adenoma. Am J Ophthalmol. 1974;78(3):497–500.

    Article  CAS  PubMed  Google Scholar 

  291. Huschle O, et al. Glaucoma in central hypothalamic-hypophyseal Cushing syndrome. Fortschritte der Ophthalmologie: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 1990;87(5):453–6.

    CAS  Google Scholar 

  292. Stárka L, Hampl R, Obenberger J. Corticosterone in the aqueous humour of the rabbit eye. J Steroid Biochem. 1972;3(1):39–42.

    Article  PubMed  Google Scholar 

  293. Starka L, et al. The role of corticosteroids in the homeostasis of the eye. J Steroid Biochem. 1986;24(1):199–205.

    Article  CAS  PubMed  Google Scholar 

  294. Tielsch JM, et al. Racial variations in the prevalence of primary open-angle glaucoma: the Baltimore Eye Survey. Jama. 1991;266(3):369–74.

    Article  CAS  PubMed  Google Scholar 

  295. Opatowsky I, et al. Intraocular pressure elevation associated with inhalation and nasal corticosteroids. Ophthalmology. 1995;102(2):177–9.

    Article  CAS  PubMed  Google Scholar 

  296. Spiliotopoulos C, et al. The effect of nasal steroid administration on intraocular pressure. Ear Nose Throat J. 2007;86(7):394–5.

    Article  PubMed  Google Scholar 

  297. Katsushima H. Corticosteroid-induced glaucoma following treatment of the periorbital region. Nippon Ganka Gakkai Zasshi. 1995;99(2):238–43.

    CAS  PubMed  Google Scholar 

  298. Cubey RB. Glaucoma following the application of corticosteroid to the skin of the eyelids. Br J Dermatol. 1976;95(2):207–8.

    Article  CAS  PubMed  Google Scholar 

  299. Rosenblum C, Dengler RE, Geoffroy RF. Ocular absorption of dexamethasone phosphate disodium by the rabbit. Arch Ophthalmol. 1967;77(2):234–7.

    Article  CAS  PubMed  Google Scholar 

  300. Campochiaro PA, et al. Sustained ocular delivery of fluocinolone acetonide by an intravitreal insert. Ophthalmology. 2010;117(7):1393–1399. e3.

    Article  PubMed  Google Scholar 

  301. Black RL, et al. Posterior subcapsular cataracts induced by corticosteroids in patients with rheumatoid arthritis. Jama. 1960;174(2):166–71.

    Article  CAS  PubMed  Google Scholar 

  302. Karim A, Jacob T, Thompson G. The human lens epithelium; morphological and ultrastructural changes associated with steroid therapy. Exp Eye Res. 1989;48(2):215–24.

    Article  CAS  PubMed  Google Scholar 

  303. Shun-Shin GA, et al. Dynamic nature of posterior subcapsular cataract. Br J Ophthalmol. 1989;73(7):522–7.

    Article  Google Scholar 

  304. Jobling AI, Augusteyn RC. What causes steroid cataracts? A review of steroid-induced posterior subcapsular cataracts. Clin Exp Optom. 2002;85(2):61–75.

    Article  PubMed  Google Scholar 

  305. Bodor N, Buchwald P. Ophthalmic drug design based on the metabolic activity of the eye: soft drugs and chemical delivery systems. AAPS J. 2005;7(4):E820–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Bucala R, et al. Glucocorticoid-lens protein adducts in experimentally induced steroid cataracts. Exp Eye Res. 1985;40(6):853–63.

    Article  CAS  PubMed  Google Scholar 

  307. Bucala R, et al. Nonenzymatic modification of lens crystallins by prednisolone induces sulfhydryl oxidation and aggregate formation: in vitro and in vivo studies. Exp Eye Res. 1985;41(3):353–63.

    Article  CAS  PubMed  Google Scholar 

  308. Flach A, Jaffe N, Akers W. The effect of ketorolac tromethamine in reducing postoperative inflammation: double-mask parallel comparison with dexamethasone. Ann Ophthalmol. 1989;21(11):407–11.

    CAS  PubMed  Google Scholar 

  309. Harding JJ. The lens: development, proteins, metabolism and cataract. Eye. 1984;1:207–492.

    Article  Google Scholar 

  310. Hanania NA, Chapman KR, Kesten S. Adverse effects of inhaled corticosteroids. Am J Med. 1995;98(2):196–208.

    Article  CAS  PubMed  Google Scholar 

  311. Garbe E, Suissa S, LeLorier J. Association of inhaled corticosteroid use with cataract extraction in elderly patients. Jama. 1998;280(6):539–43.

    Article  CAS  PubMed  Google Scholar 

  312. Bilgihan K, et al. Fluorometholone-Lnduced cataract after photoref ractive keratectomy. Ophthalmologica. 1997;211(6):394–6.

    Article  CAS  PubMed  Google Scholar 

  313. Deshmukh C. Minimizing side effects of systemic corticosteroids in children. Indian J Dermatol Venereol Leprol. 2007;73(4):218.

    Article  CAS  PubMed  Google Scholar 

  314. Ohta Y, et al. Anticataract action of vitamin E: its estimation using an in vitro steroid cataract model. Ophthal Lit. 1997;1(50):21.

    Google Scholar 

  315. Abdelkader H, et al. On the anticataractogenic effects of L-carnosine: is it best described as an antioxidant, metal-chelating agent or glycation inhibitor? Oxidative Med Cell Longev. 2016;2016:3240261.

    Article  CAS  Google Scholar 

  316. Samadi A. Steroid-induced cataract. In: Levin LA, Albert DM, editors. Ocular Disease: Mechanism and Management. USA: SAUNDERS, Elsevier; 2010. p. 250–7.

    Chapter  Google Scholar 

  317. Hengge UR, et al. Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol. 2006;54(1):1–15.

    Article  PubMed  Google Scholar 

  318. Moisseiev E, Loewenstein A. Drug delivery to the posterior segment of the eye, in Macular Edema. 2017, Karger Publishers. p. 87–101.

  319. Koay P. The emerging roles of topical non-steroidal anti-inflammatory agents in ophthalmology. Br J Ophthalmol. 1996;80(5):480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Othenin-Girard P, et al. Dexamethasone versus diclofenac sodium eyedrops to treat inflammation after cataract surgery. J Cataract Refract Surg. 1994;20(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  321. Abdelkader H, et al. Cyclodextrin enhances corneal tolerability and reduces ocular toxicity caused by diclofenac. Oxidative Med Cell Longev. 2018;2018:1–14.

    Article  CAS  Google Scholar 

  322. Pereira F, et al. Systemic absortion and adverse effects of topical ocular use of ketorolac tromethamine and sodium diclofenac in New Zealand rabbits for 90 days. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 2019;71(6):1865–72.

    Article  Google Scholar 

  323. Fukushima A, et al. Therapeutic effects of 0.1% tacrolimus eye drops for refractory allergic ocular diseases with proliferative lesion or corneal involvement. Br J Ophthalmol. 2014;98:1023–7.

    Article  PubMed  Google Scholar 

  324. Eljarrat-Binstock E, Domb AJ. Iontophoresis: a non-invasive ocular drug delivery. J Control Release. 2006;110(3):479–89.

    Article  CAS  PubMed  Google Scholar 

  325. Kompella UB, et al. Ocular drug delivery: nanotechnology, physical and chemical methods, vitreous drug binding, and aging eye. J Ocular Pharmacol Ther, 2019.

  326. Patane MA, et al. Ocular iontophoresis for drug delivery. Retina Today. 2011;6:64–6.

    Google Scholar 

  327. Patane M, et al. Randomized, double-masked study of four iontophoresis dose levels of EGP-437 in non-infectious anterior segment uveitis subjects. Invest Ophthalmol Vis Sci. 2010;51(13):5263.

    Google Scholar 

  328. Ocular Therapeutix. Dextenza. 2016 [cited Accessed 20 July 2020.; Available from: http://www.ocutx.com/pipeline/dexamethasone-punctum-plug.

  329. Bodor N, Shek E, Higuchi T. Improved delivery through biological membranes. 1. Synthesis and properties of 1-methyl-1, 6-dihydropyridine-2-carbaldoxime, a pro-drug of N-methylpyridinium-2-carbaldoxime chloride. J Med Chem. 1976;19(1):102–7.

    Article  CAS  PubMed  Google Scholar 

  330. Druzgala P, Wu W-M, Bodor N. Ocular absorption and distribution of loteprednol etabonate, a soft steroid, in rabbit eyes. Curr Eye Res. 1991;10(10):933–7.

    Article  CAS  PubMed  Google Scholar 

  331. Samir A, et al. Development of simultaneous quantification method of loteprednol etabonate (LE) and its acidic metabolites, and analysis of LE metabolism in rat. Xenobiotica. 2019;49(5):569–76.

    Article  CAS  PubMed  Google Scholar 

  332. Liu RF, et al. Efficacy of olopatadine hydrochloride 0.1%, emedastine difumarate 0.05%, and loteprednol etabonate 0.5% for Chinese children with seasonal allergic conjunctivitis: a randomized vehicle-controlled study. in International forum of allergy & rhinology. 2017. Wiley Online Library.

  333. Shulman DG, et al. A randomized, double-masked, placebo-controlled parallel study of loteprednol etabonate 0.2% in patients with seasonal allergic conjunctivitis. Ophthalmology. 1999;106(2):362–9.

    Article  CAS  PubMed  Google Scholar 

  334. Comstock TL, Sheppard JD. Loteprednol etabonate for inflammatory conditions of the anterior segment of the eye: twenty years of clinical experience with a retrometabolically designed corticosteroid. Expert Opin Pharmacother. 2018;19(4):337–53.

    Article  CAS  PubMed  Google Scholar 

  335. Lane SS, Holland EJ. Loteprednol etabonate 0.5% versus prednisolone acetate 1.0% for the treatment of inflammation after cataract surgery. J Cataract Refract Surg. 2013;39(2):168–73.

    Article  PubMed  Google Scholar 

  336. Glogowski S, et al. Prolonged exposure to loteprednol etabonate in human tear fluid and rabbit ocular tissues following topical ocular administration of lotemax gel, 0.5%. J Ocul Pharmacol Ther. 2014;30(1):66–73.

    Article  CAS  PubMed  Google Scholar 

  337. Lomholt JA, Møller JK, Ehlers N. Prolonged persistence on the ocular surface of fortified gentamicin ointment as compared to fortified gentamicin eye drops. Acta Ophthalmol Scand. 2000;78(1):34–6.

    Article  CAS  PubMed  Google Scholar 

  338. Flach AJ. Topical nonsteroidal antiinflammatory drugs in ophthalmology. Int Ophthalmol Clin. 2002;42(1):1–11.

    Article  PubMed  Google Scholar 

  339. O’Brien T. Emerging guidelines for use of NSAID therapy to optimize cataract surgery patient care. Curr Med Res Opin. 2005;21(7):1131–7.

    Article  PubMed  Google Scholar 

  340. Cho H, Wolf KJ, Wolf EJ. Management of ocular inflammation and pain following cataract surgery: focus on bromfenac ophthalmic solution. Clin Ophthalmol. 2009;3:199.

    Article  PubMed  PubMed Central  Google Scholar 

  341. Endo N, et al. Efficacy of bromfenac sodium ophthalmic solution in preventing cystoid macular oedema after cataract surgery in patients with diabetes. Acta Ophthalmol. 2010;88(8):896–900.

    Article  CAS  PubMed  Google Scholar 

  342. Brennan K, Brown R, Roberts C. A comparison of topical non-steroidal anti-inflammatory drugs to steroids for control of post cataract inflammation. Insight. 1993;18(1):8–9 11.

    PubMed  Google Scholar 

  343. Duan P, Liu Y, Li J. The comparative efficacy and safety of topical non-steroidal anti-inflammatory drugs for the treatment of anterior chamber inflammation after cataract surgery: a systematic review and network meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2017;255(4):639–49.

    Article  CAS  PubMed  Google Scholar 

  344. Lane SS, et al. Nepafenac ophthalmic suspension 0.1% for the prevention and treatment of ocular inflammation associated with cataract surgery. J Cataract Refract Surg. 2007;33(1):53–8.

    Article  PubMed  Google Scholar 

  345. Gieser D, et al. Flurbiprofen and intraocular pressure. Ann Ophthalmol. 1981;13(7):831–3.

    CAS  PubMed  Google Scholar 

  346. Ayalasomayajula SP, Kompella UB. Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozotocin-induced diabetic rat model. Eur J Pharmacol. 2003;458(3):283–9.

    Article  CAS  PubMed  Google Scholar 

  347. Ayalasomayajula SP, Amrite AC, Kompella UB. Inhibition of cyclooxygenase-2, but not cyclooxygenase-1, reduces prostaglandin E2 secretion from diabetic rat retinas. Eur J Pharmacol. 2004;498(1–3):275–8.

    Article  CAS  PubMed  Google Scholar 

  348. Amrite AC, et al. Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci. 2006;47(3):1149–60.

    Article  PubMed  Google Scholar 

  349. Shoughy SS. Topical tacrolimus in anterior segment inflammatory disorders. Eye Vision. 2017;4(1):7.

  350. Ames P, Galor A. Cyclosporine ophthalmic emulsions for the treatment of dry eye: a review of the clinical evidence. Clin Investig (Lond). 2015;5:267–85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdy Abdelkader.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaballa, S.A., Kompella, U.B., Elgarhy, O. et al. Corticosteroids in ophthalmology: drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv. and Transl. Res. 11, 866–893 (2021). https://doi.org/10.1007/s13346-020-00843-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00843-z

Keywords

Navigation