Skip to main content

Advertisement

Log in

Preclinical evaluation of an innovative anti-TAM approach based on zoledronate-loaded erythrocytes

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In tumor microenvironment, tumor-associated macrophages (TAMs) are implicated in cancer sustainment, metastasis, and drug resistance, raising a growing interest as targets in cancer therapy. Since the bisphosphonate zoledronate has proven to affect TAMs’ functions, the anti-tumor effect of single or repeated administrations of red blood cells (RBCs) encapsulating zoledronate was evaluated in a mouse model of mammary carcinoma. The obtained results showed that loaded RBCs, but not free zoledronate, caused a significant (p < 0.01) and time-lasting reduction of TAMs’ extent in tumor mass of Balb/C mice inoculated with murine mammary carcinoma T41 cells; in addition, a significant reduction (p < 0.05) of tumor growth rate has been obtained only following repeated administrations of zoledronate-loaded RBCs. The anti-tumor effect was secondary to the early depletion of spleen macrophages. Moreover, by assessing the IgG2a/IgG1 ratio, a prevalence of Th1 cytotoxic response in tumor-bearing mice receiving zoledronate by means of RBCs has been observed. These encouraging findings provide further evidence for the central role played by macrophages in tumor setting and highlight the suitability of zoledronate-loaded RBCs as pharmacological agents in depleting, even if indirectly, TAMs and, thus, their eligibility as part of a therapeutic strategy in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4:71–8.

    Article  PubMed  CAS  Google Scholar 

  2. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006;25:315–22.

    Article  PubMed  Google Scholar 

  3. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol. 2009;9:259–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med. 2015;212:435–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tariq M, Zhang J, Liang G, Ding L, He Q, Macrophage Polarization YB. Anti-cancer strategies to target tumor-associated macrophage in breast cancer. J Cell Biochem. 2017;118:2484–501.

    Article  PubMed  CAS  Google Scholar 

  6. Zhu J, Zhi Q, Zhou BP, Tao M, Liu J, Li W. The role of tumor associated macrophages in the tumor microenvironment: mechanism and functions. Anti Cancer Agents Med Chem. 2016;16:1133–41.

    Article  CAS  Google Scholar 

  7. Mukhtar RA, Moore AP, Nseyo O, Baehner FL, Au A, Moore DH, et al. Elevated PCNA+ tumor-associated macrophages in breast cancer are associated with early recurrence and non-Caucasian ethnicity. Breast Cancer Res Treat. 2011;130:635–44.

    Article  PubMed  CAS  Google Scholar 

  8. Mukhtar RA, Moore AP, Tandon VJ, Nseyo O, Twomey P, Adisa CA, et al. Elevated levels of proliferating and recently migrated tumor-associated macrophages confer increased aggressiveness and worse outcomes in breast cancer. Ann Surg Oncol. 2012;19:3979–86.

    Article  PubMed  Google Scholar 

  9. Cho HJ, Jung JI, Lim DY, Kwon GT, Her S, Park JH, et al. Bone marrow-derived, alternatively activated macrophages enhance solid tumor growth and lung metastasis of mammary carcinoma cells in a Balb/C mouse orthotopic model. Breast Cancer Res. 2012;14:R81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Coscia M, Quaglino E, Iezzi M, Curcio C, Pantaleoni F, Riganti C, et al. Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J Cell Mol Med. 2010;14:2803–15.

    Article  PubMed  CAS  Google Scholar 

  11. Rodan GA, Reszka AA. Bisphosphonate mechanism of action. Curr Mol Med. 2002;2:571–7.

    Article  PubMed  CAS  Google Scholar 

  12. Cecchini MG, Felix R, Fleisch H, Cooper PH. Effect of bisphosphonates on proliferation and viability of mouse bone marrow-derived macrophages. J Bone Miner Res. 1987;2:135–42.

    Article  PubMed  CAS  Google Scholar 

  13. Frith JC, Rogers MJ. Antagonistic effects of different classes of bisphosphonates in osteoclasts and macrophages in vitro. J Bone Miner Res. 2003;18:204–12.

    Article  PubMed  CAS  Google Scholar 

  14. Mönkkönen H, Rogers MJ, Makkonen N, Niva S, Auriola S, Mönkkönen J. The cellular uptake and metabolism of clodronate in RAW 264 macrophages. Pharm Res. 2001;18:1550–5.

    Article  PubMed  Google Scholar 

  15. Moreau MF, Guillet C, Massin P, Chevalier S, Gascan H, Baslé MF, et al. Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro. Biochem Pharmacol. 2007;73:718–23.

    Article  PubMed  CAS  Google Scholar 

  16. Rogers MJ, Chilton KM, Coxon FP, Lawry J, Smith MO, Suri S, et al. Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism. J Bone Miner Res. 1996;11:1482–91.

    Article  PubMed  CAS  Google Scholar 

  17. Selander KS, Mönkkönen J, Karhukorpi EK, Härkönen P, Hannuniemi R, Väänänen HK. Characteristics of clodronate-induced apoptosis in osteoclasts and macrophages. Mol Pharmacol. 1996;50:1127–38.

    PubMed  CAS  Google Scholar 

  18. Holen I, Coleman RE. Anti-tumour activity of bisphosphonates in preclinical models of breast cancer. Breast Cancer Res. 2010;12:214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Roelofs AJ, Thompson K, Gordon S, Rogers MJ. Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res. 2006;12:6222s–30s.

    Article  PubMed  CAS  Google Scholar 

  20. Thompson K, Rogers MJ, Coxon FP, Crockett JC. Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Mol Pharmacol. 2006;69:1624–32.

    Article  PubMed  CAS  Google Scholar 

  21. Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M, et al. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res. 2000;60:2949–54.

    PubMed  CAS  Google Scholar 

  22. Derenne S, Amiot M, Barillé S, Collette M, Robillard N, Berthaud P, et al. Zoledronate is a potent inhibitor of myeloma cell growth and secretion of IL-6 and MMP-1 by the tumoral environment. J Bone Miner Res. 1999;14:2048–56.

    Article  PubMed  CAS  Google Scholar 

  23. Fromigue O, Lagneaux L, Body JJ. Bisphosphonates induce breast cancer cell death in vitro. J Bone Miner Res. 2000;15:2211–21.

    Article  PubMed  CAS  Google Scholar 

  24. Lee MV, Fong EM, Singer FR, Guenette RS. Bisphosphonate treatment inhibits the growth of prostate cancer cells. Cancer Res. 2001;61:2602–8.

    PubMed  CAS  Google Scholar 

  25. Tassone P, Tagliaferri P, Viscomi C, Palmieri C, Caraglia M, D'Alessandro A, et al. Zoledronic acid induces antiproliferative and apoptotic effects in human pancreatic cancer cells in vitro. Br J Cancer. 2003;88:1971–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Giraudo E, Inoue M, Hanahan D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest. 2004;114:623–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Hegmans JP, et al. Zoledronic acid impairs myeloid differentiation to tumour-associated macrophages in mesothelioma. Br J Cancer. 2010;103:629–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Abrahamsen B. Adverse effects of bisphosphonates. Calcif Tissue Int. 2010;86:421–35.

    Article  PubMed  CAS  Google Scholar 

  29. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. HORIZON pivotal fracture trial. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356:1809–22.

    Article  PubMed  CAS  Google Scholar 

  30. Cummings SR, Schwartz AV, Black DM. Alendronate and atrial fibrillation. N Engl J Med. 2007;356:1895–6.

    Article  PubMed  CAS  Google Scholar 

  31. Lyles KW, Colón-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, et al. HORIZON recurrent fracture trial. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007;357:1799–809.

    Article  PubMed  CAS  Google Scholar 

  32. Reid IR. Osteonecrosis of the jaw: who gets it and why? Bone. 2009;44:4–10.

    Article  PubMed  CAS  Google Scholar 

  33. Giger EV, Castagner B, Leroux JC. Biomedical applications of bisphosphonates. J Control Release. 2013;167:175–88.

    Article  PubMed  CAS  Google Scholar 

  34. Sabatino R, Antonelli A, Battistelli S, Schwendener R, Magnani M, Rossi L. Macrophage depletion by free bisphosphonates and zoledronate-loaded red blood cells. PLoS One. 2014;9:e101260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pulaski BA, Ostrand-Rosenberg S. Mouse 4T1 breast tumor model. Curr Protoc Immunol. 2001;Chapter 20:Unit 20.2.

  36. Finkelman FD, Holmes J, Katona IM, Urban JF Jr, Beckmann MP, Park LS, et al. Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol. 1990;8:303–33.

    Article  PubMed  CAS  Google Scholar 

  37. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Van Acker HH, Anguille S, Willemen Y, Smits EL, Van Tendeloo VF. Bisphosphonates for cancer treatment: mechanisms of action and lessons from clinical trials. Pharmacol Ther. 2016;158:24–40.

    Article  PubMed  CAS  Google Scholar 

  39. Fournier P, Boissier S, Filleur S, Guglielmi J, Cabon F, Colombel M, et al. Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res. 2002;62:6538–44.

    PubMed  CAS  Google Scholar 

  40. Hiraga T, Williams PJ, Ueda A, Tamura D, Yoneda T. Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model. Clin Cancer Res. 2004;10:4559–67.

    Article  PubMed  CAS  Google Scholar 

  41. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 2007;67:11438–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kim SJ, Uehara H, Yazici S, He J, Langley RR, Mathew P, et al. Modulation of bone microenvironment with zoledronate enhances the therapeutic effects of STI571 and paclitaxel against experimental bone metastasis of human prostate cancer. Cancer Res. 2005;65:3707–15.

    Article  PubMed  CAS  Google Scholar 

  43. Ottewell PD, Mönkkönen H, Jones M, Lefley DV, Coleman RE, Holen I. Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J Natl Cancer Inst. 2008;100:1167–78.

    Article  PubMed  CAS  Google Scholar 

  44. Shmeeda H, Amitay Y, Tzemach D, Gorin J, Gabizon A. Liposome encapsulation of zoledronic acid results in major changes in tissue distribution and increase in toxicity. J Control Release. 2013;167:265–75.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX, et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res. 2010;16:3420–30.

    Article  PubMed  CAS  Google Scholar 

  46. Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjällman AH, Ballmer-Hofer K, Schwendener RA. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer. 2006;95:272–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Poli A, Wang J, Domingues O, Planagumà J, Yan T, Rygh CB, et al. Targeting glioblastoma with NK cells and mAb against NG2/CSPG4 prolongs animal survival. Oncotarget. 2013;4:1527–46.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dai M, Yip YY, Hellstrom I, Hellstrom KE. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Clin Cancer Res. 2015;21:1127–38.

    Article  PubMed  CAS  Google Scholar 

  49. DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9:212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer. 2007;7:95–106.

    Article  PubMed  CAS  Google Scholar 

  51. Feng Q, Wei H, Morihara J, Stern J, Yu M, Kiviat N, et al. Th2 type inflammation promotes the gradual progression of HPV-infected cervical cells to cervical carcinoma. Gynecol Oncol. 2012;127:412–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Niu M, Valdes S, Naguib YW, Hursting SD, Cui Z. Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer. Mol Pharm. 2016;13:1833–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 2013;23:249–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. A. Rosato, from Veneto Institute of Oncology IOV-IRCCS (Padova, Italy), for providing mice mammary carcinomaT41 cell line and for his helpful assistance with animal experiments.

This work was supported by Authors’ laboratory institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigia Rossi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabatino, R., Battistelli, S., Magnani, M. et al. Preclinical evaluation of an innovative anti-TAM approach based on zoledronate-loaded erythrocytes. Drug Deliv. and Transl. Res. 8, 1355–1364 (2018). https://doi.org/10.1007/s13346-018-0560-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0560-2

Keywords

Navigation