Skip to main content
Log in

Conformal field theory for annulus SLE: partition functions and martingale-observables

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We implement a version of conformal field theory in a doubly connected domain with numerous conformal types to connect it to the theory of annulus SLE of various types, including the standard annulus SLE, the reversible annulus SLE, and the annulus SLE with several force points. This implementation considers the statistical fields generated under the OPE multiplication by the Gaussian free field and its central/background charge modifications with a weighted combination of Dirichlet and excursion-reflected boundary conditions. We derive the Eguchi–Ooguri version of Ward’s equations and Belavin–Polyakov–Zamolodchikov equations for those statistical fields and use them to show that the correlations of fields in the OPE family under the insertion of the one-leg operators are martingale-observables for various annulus SLEs. We find Coulomb gas (Dotsenko–Fateev integral) solutions to the parabolic partial differential equations for partition functions of conformal field theory for the reversible annulus SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Alberts, T., Byun, S.-S., Kang, N.-G., Makarov, N.: Pole dynamics and an integral of motion for multiple SLE(0). arXiv:2011.05714v2

  2. Alberts, T., Kang, N.-G., Makarov, N.: Conformal field theory for multiple SLEs. in preparation

  3. Bauer, M., Bernard, D., Kytölä, K.: LERW as an example of off-critical SLEs. J. Stat. Phys. 132(4), 721–754 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Bauer, R.O.: Restricting SLE(8/3) to an annulus. Stoch. Process. Appl. 117(9), 1165–1188 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bauer, R.O., Friedrich, R.M.: On radial stochastic Loewner evolution in multiply connected domains. J. Funct. Anal. 237(2), 565–588 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Beffara, V.: The dimension of the SLE curves. Ann. Probab. 36(4), 1421–1452 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Burdzy, K., Chen, Z.-Q., Marshall, D., Ramanan, K.: Obliquely reflected Brownian motion in non-smooth planar domains. Ann. Probab. 45(5), 2971–3037 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Caracciolo, S., Jacobsen, J.L., Saleur, H., Sokal, A.D., Sportiello, A.: Fermionic field theory for trees and forests. Phys. Rev. Lett. 93(8), 080601 (2004)

    MathSciNet  Google Scholar 

  9. Chandrasekharan, K.: Elliptic Functions. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281. Springer, Berlin (1985)

    Google Scholar 

  10. Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., Smirnov, S.: Convergence of Ising interfaces to Schramm’s SLE curves. C. R. Math. Acad. Sci. Paris 352(2), 157–161 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Chen, Z.-Q., Fukushima, M., Rohde, S.: Chordal Komatu–Loewner equation and Brownian motion with darning in multiply connected domains. Trans. Am. Math. Soc. 368(6), 4065–4114 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Crowdy, D., Marshall, J.: Conformal mappings between canonical multiply connected domains. Comput. Methods Funct. Theory 6(1), 59–76 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Crowdy, D., Marshall, J.: Green’s functions for Laplace’s equation in multiply connected domains. IMA J. Appl. Math. 72(3), 278–301 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Graduate Texts in Contemporary Physics, Springer, New York (1997)

    MATH  Google Scholar 

  15. Drenning, S.: Excursion reflected Brownian motion and Loewner equations in multiply connected domains. ProQuest LLC, Ann Arbor, MI, (2011). Thesis (Ph.D.), The University of Chicago

  16. Dubédat, J.: Critical percolation in annuli and SLE\(_6\). Commun. Math. Phys. 245(3), 627–637 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Dubédat, J.: \({\rm SLE}(\kappa,\rho )\) martingales and duality. Ann. Probab. 33(1), 223–243 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Dubédat, J.: Euler integrals for commuting SLEs. J. Stat. Phys. 123(6), 1183–1218 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Dubédat, J.: Commutation relations for Schramm–Loewner evolutions. Commun. Pure Appl. Math. 60(12), 1792–1847 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Dubédat, J.: SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22(4), 995–1054 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Eguchi, T., Ooguri, H.: Conformal and current algebras on a general Riemann surface. Nucl. Phys. B 282(2), 308–328 (1987)

    MathSciNet  Google Scholar 

  22. Etingof, P.I., Frenkel, I.B., Kirillov, A.A., Jr.: Lectures on Representation Theory and Knizhnik–Zamolodchikov Equations. Mathematical Surveys and Monographs, vol. 58. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  23. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations: Part 1. Commun. Math. Phys. 333(1), 389–434 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations: Part 2. Commun. Math. Phys. 333(1), 435–481 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations: Part 3. Commun. Math. Phys. 333(2), 597–667 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations: Part 4. Commun. Math. Phys. 333(2), 669–715 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Forrester, P.J.: Particles in a magnetic field and plasma analogies: doubly periodic boundary conditions. J. Phys. A 39(41), 13025–13036 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Hagendorf, C.: A generalization of Schramm’s formula for \( \rm SLE_2\). J. Stat. Mech. Theory Exp. 2009(02), P02033 (2009)

    Google Scholar 

  29. Hagendorf, C., Bernard, D., Bauer, M.: The Gaussian free field and \({\rm SLE}_4\) on doubly connected domains. J. Stat. Phys. 140(1), 1–26 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Hedenmalm, H., Nieminen, P.J.: The Gaussian free field and Hadamard’s variational formula. Probab. Theory Relat. Fields 159(1–2), 61–73 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Henrici, P.: Applied and Computational Complex Analysis. Vol. 3. Pure and Applied Mathematics. Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions. A Wiley-Interscience Publication. Wiley, New York (1986)

  32. Izyurov, K.: Critical Ising interfaces in multiply-connected domains. Probab. Theory Relat. Fields 167(1–2), 379–415 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Izyurov, K.: On multiple SLE for the FK-Ising model. Ann. Probab. 50(2), 771–790 (2022)

    MathSciNet  MATH  Google Scholar 

  34. Izyurov, K., Kytölä, K.: Hadamard’s formula and couplings of SLEs with free field. Probab. Theory Relat. Fields 155(1–2), 35–69 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Kang, N.-G., Makarov, N.: Conformal field theory on the Riemann sphere and its boundary version for SLE. arXiv:2111.10057

  36. Kang, N.-G., Makarov, N.G.: Gaussian free field and conformal field theory. Astérisque 353, viii+136 (2013)

  37. Kang, N.-G., Makarov, N.G.: Calculus of conformal fields on a compact Riemann surface. arXiv:1708.07361 (2017)

  38. Katori, M.: Two-dimensional elliptic determinantal point processes and related systems. Commun. Math. Phys. 371(3), 1283–1321 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Katori, M., Koshida, S.: Gaussian free fields coupled with multiple SLEs driven by stochastic log-gases. Adv. Stud. Pure Math. 315–340 (2021)

  40. Koebe, P.: Abhandlungen zur theorie der konformen abbildung. Acta Math. 41(1), 305–344 (1916)

    MathSciNet  MATH  Google Scholar 

  41. Krichever, I., Marshakov, A., Zabrodin, A.: Integrable structure of the Dirichlet boundary problem in multiply-connected domains. Commun. Math. Phys. 259(1), 1–44 (2005)

    MathSciNet  MATH  Google Scholar 

  42. Kytölä, K., Peltola, E.: Pure partition functions of multiple SLEs. Commun. Math. Phys. 346(1), 237–292 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Kytölä, K., Peltola, E.: Conformally covariant boundary correlation functions with a quantum group. J. Eur. Math. Soc. (JEMS) 22(1), 55–118 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Lawler, G., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16(4), 917–955 (2003)

    MathSciNet  MATH  Google Scholar 

  45. Lawler, G.F.: The Laplacian-\( b \) random walk and the Schramm–Loewner evolution. Ill. J. Math. 50(1–4), 701–746 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Lawler, G.F.: Defining SLE in multiply connected domains with the Brownian loop measure. arXiv:1108.4364 (2011)

  47. Lenells, J., Viklund, F.: Asymptotic analysis of Dotsenko–Fateev integrals. Ann. Henri Poincaré 20(11), 3799–3848 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Lupu, T., Wu, H.: A level line of the Gaussian free field with measure-valued boundary conditions. arXiv:2106.15169 (2021)

  49. Majumdar, S.: Exact fractal dimension of the loop-erased self-avoiding walk in two dimensions. Phys. Rev. Lett. 68(15), 2329 (1992)

    Google Scholar 

  50. Makarov, N., Smirnov, S.: Off-critical lattice models and massive SLEs. In: XVIth International Congress on Mathematical Physics, pp. 362–371 (2010)

  51. Miller, J., Sheffield, S.: Imaginary geometry III: reversibility of \(\rm SLE_\kappa \) for \(\kappa \in (4,8)\). Ann. Math. (2) 184(2), 455–486 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Mörters, P., Peres, Y.: Brownian Motion, vol. 30. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  53. Ø ksendal, B.: Stochastic Differential Equations. An Introduction with Applications. Universitext, 6th edn. Springer, Berlin (2003)

    Google Scholar 

  54. Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. US Department of Commerce, National Institute of Standards and Technology (2010)

  55. Peltola, E.: Basis for solutions of the Benoit & Saint-Aubin PDEs with particular asymptotics properties. Ann. Inst. Henri Poincaré D 7(1), 1–73 (2020)

    MathSciNet  MATH  Google Scholar 

  56. Peltola, E., Wang, Y.: Large deviations of multichordal \({{\rm SLE}}_{0+}\), real rational functions, and zeta-regularized determinants of Laplacians. J. Eur. Math. Soc. arXiv:2006.08574 (2020)

  57. Peltola, E., Wu, H.: Global and local multiple SLEs for \(\kappa \le 4\) and connection probabilities for level lines of GFF. Commun. Math. Phys. 366(2), 469–536 (2019)

    MathSciNet  MATH  Google Scholar 

  58. Powell, E., Wu, H.: Level lines of the Gaussian free field with general boundary data. Ann. Inst. Henri Poincaré Probab. Stat. 53(4), 2229–2259 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Qian, W., Werner, W.: Coupling the Gaussian free fields with free and with zero boundary conditions via common level lines. Commun. Math. Phys. 361(1), 53–80 (2018)

    MathSciNet  MATH  Google Scholar 

  60. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 (2000)

    MathSciNet  MATH  Google Scholar 

  61. Schramm, O.: A percolation formula. Electron. Commun. Probab. 6, 115–120 (2001)

    MathSciNet  MATH  Google Scholar 

  62. Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21–137 (2009)

    MathSciNet  MATH  Google Scholar 

  63. Schramm, O., Wilson, D.B.: SLE coordinate changes. New York J. Math. 11, 659–669 (2005)

    MathSciNet  MATH  Google Scholar 

  64. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3), 239–244 (2001)

    MathSciNet  MATH  Google Scholar 

  65. Varchenko, A.: Special functions, KZ type equations, and representation theory, volume 98 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (2003)

  66. Verlinde, E., Verlinde, H.: Chiral bosonization, determinants and the string partition function. Nucl. Phys. B 288(2), 357–396 (1987)

    MathSciNet  Google Scholar 

  67. Yoshida, M.: Hypergeometric Functions, My Love: Modular Interpretations of Configuration Spaces, vol. 32. Springer, Berlin (2013)

    MATH  Google Scholar 

  68. Zhan, D.: Random Loewner chains in Riemann surfaces. PhD Thesis, California Institute of Technology (2004)

  69. Zhan, D.: Stochastic Loewner evolution in doubly connected domains. Probab. Theory Relat. Fields 129(3), 340–380 (2004)

    MathSciNet  MATH  Google Scholar 

  70. Zhan, D.: Some properties of annulus SLE. Electron. J. Probab. 11, 1069–1093 (2006)

    MathSciNet  MATH  Google Scholar 

  71. Zhan, D.: Reversibility of chordal SLE. Ann. Probab. 36(4), 1472–1494 (2008)

    MathSciNet  MATH  Google Scholar 

  72. Zhan, D.: The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36(2), 467–529 (2008)

    MathSciNet  MATH  Google Scholar 

  73. Zhan, D.: Restriction properties of annulus SLE. J. Stat. Phys. 146(5), 1026–1058 (2012)

    MathSciNet  MATH  Google Scholar 

  74. Zhan, D.: Reversibility of whole-plane SLE. Probab. Theory Relat. Fields 161(3–4), 561–618 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to Dapeng Zhan for valuable comments and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Soo Byun.

Ethics declarations

conflict of interest:

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partially supported by Samsung Science and Technology Foundation (SSTF-BA1401-51) and by the National Research Foundation of Korea (NRF-2019R1A5A1028324). Sung-Soo Byun was partially supported by the DFG-NRF through the IRTG 2235 and by a KIAS Individual Grant (SP083201) via the Center for Mathematical Challenges at Korea Institute for Advanced Study. Nam-Gyu Kang was partially supported by a KIAS Individual Grant (MG058103) at Korea Institute for Advanced Study.

Appendix A: Representation of Green’s function

Appendix A: Representation of Green’s function

In this “Appendix” we present an analytic representation of Green’s function in a doubly connected domain with various boundary conditions.

For a parameter \(\beta \in (-1/2,1/2)\), we say a function F defined in a domain \({\bar{D}}\) satisfies RH\(_\beta \) boundary condition (b.c.) on \(l \subset \partial D\) if

$$\begin{aligned} \Bigg [ \cos (\beta \pi )\partial _n-\sin (\beta \pi ) \partial _\tau \Bigg ] F(\cdot )=0 \text { on } l \subset \partial D. \end{aligned}$$

Here \(\partial _n\) is the (inwards) normal derivative and \(\partial _\tau \) is the tangential one. In particular, the case \(\beta =0\) corresponds to the Neumann b.c.

Let us define

$$\begin{aligned} f_\beta (r,z):=\frac{\Theta '(r,0)}{\Theta (r,\pi -2\beta \pi )} \frac{\Theta (r,z+\pi -2\beta \pi )}{\Theta (r,z)}. \end{aligned}$$

By the quasi-periodicities (3.4) of the theta function, we have

$$\begin{aligned} f_\beta (r,z+2\pi )=f_\beta (r,z), \qquad f_\beta (r,z+2ir)=e^{i(2\beta -1)\pi }f_\beta (r,z). \end{aligned}$$
(A.1)

Since \(\Theta (r,\cdot )\) is an odd function,

$$\begin{aligned} f_\beta (r,z)=-f_{-\beta }(r,-z). \end{aligned}$$
(A.2)

On the other hand, \(f_\beta \) satisfies

$$\begin{aligned} f_\beta (r,z)=\frac{1}{z}+\frac{H(r,\pi -2\beta \pi )}{2}+O(z),\qquad \text {as }z\rightarrow 0. \end{aligned}$$
(A.3)

Thus one can observe that \(f_0\) has an alternative expression

$$\begin{aligned} f_0(r,z)= \frac{1}{2} (H(2r,z)-H_I(2r,z)). \end{aligned}$$
(A.4)

It is also easy to show that \(f_\beta (r,\cdot )\) is a conformal map from the cylinder \({\mathcal {C}}_r\) to the upper half-plane minus a slit with argument \((1/2-\beta )\pi \).

For given \(w \in {\mathcal {C}}_r\), a meromorphic function

$$\begin{aligned} g_\beta (z):=f_\beta (r,z-{\bar{w}})-f_\beta (r,z-w) \end{aligned}$$

satisfies following properties:

  • \(g_\beta (z+2\pi )=g_\beta (z)\), \(g_\beta (r,z+2ir)=e^{i(2\beta -1)\pi }g_\beta (r,z)\);

  • \(g_\beta (r,\cdot )\) has simple poles at w (resp., \({\bar{w}}\)) with residue \(-1\) (resp., 1);

  • \(g_\beta (r,\cdot )\) maps \({\mathbb {R}}\) to \(i {\mathbb {R}}\);

  • \(g_\beta (r,\cdot )\) maps \({\mathbb {R}}_r\) to a line passing through 0 with angle \(\beta \) with \({\mathbb {R}}\).

All of these properties are immediate consequences of (A.1), (A.2) and (A.3). For instance, the last property follows from that for \(x\in {\mathbb {R}}\),

$$\begin{aligned} g_\beta (x+ir)&=\overline{f_\beta (r,x-ir-w)}-f_\beta (r,x+ir-w) \\&=e^{i(2\beta -1)\pi }\overline{f_\beta (r,x+ir-w)}-f_\beta (r,x+ir-w) \\&=-e^{i\beta \pi } \Bigg (e^{i\beta \pi } \overline{f_\beta (r,x+ir-w)}+ e^{-i\beta \pi } f_\beta (r,x+ir-w) \Bigg ) \in e^{i\beta \pi } {\mathbb {R}}. \end{aligned}$$

We denote by \(F_\beta (r,\cdot )\) a primitive of \(f_\beta (r,\cdot )\), i.e., \(\partial _z F_\beta (r,z)=f_\beta (r,z)\). To our knowledge, for general \(\beta \), there is no known expression for \(F_\beta (r,z)\) in terms of well-known special functions. On the other hand, by (A.4), we have

$$\begin{aligned} F_0(r,z)=\log \Bigg (\frac{\Theta (2r,z)}{\Theta _I(2r,z)}\Bigg ) \end{aligned}$$
(A.5)

up to an additive constant.

We now present Green’s function \(G_\beta \) in \({\mathcal {C}}_r\) with zero Dirichlet b.c. on \({\mathbb {R}}\) which satisfies RH\(_\beta \) condition on \({\mathbb {R}}_r\). The associated (non-symmetric) stochastic process is called obliquely reflected Brownian motion (ORBM), see [7] and references therein. We remark that ORBM gives a geometric interpolation between reflected Brownian motion (\(\beta =0\)) and ERBM (\(\beta \rightarrow \pm 1/2\)).

We claim that Green’s function \(G_\beta \) in \({\mathcal {C}}_r\) with zero Dirichlet b.c. on \({\mathbb {R}}\) which satisfies RH\(_\beta \) condition on \({\mathbb {R}}_r\) is expressed as

$$\begin{aligned} G_\beta (z_1,z_2)= \textrm{Re}\,[ F_\beta (r,z_1-{\bar{z}}_2)-F_\beta (r,z_1-z_2) ]. \end{aligned}$$
(A.6)

In particular, by (A.5), Green’s function \(G_0\) with Dirichlet–Neumann mixed boundary condition is given by

$$\begin{aligned} G_0(z_1,z_2)=\log \Bigg | \frac{\Theta /\Theta _I(2r,z_1-{\bar{z}}_2)}{\Theta /\Theta _I(2r,z_1-z_2)} \Bigg |. \end{aligned}$$

To show (A.6), it suffices to check the followings:

  • \(G_\beta (z_1,z_2)+\log |z_1-z_2|\) is harmonic function in both variables;

  • \(G_\beta (z_1,z_2)=0\) if \(z_1\) or \(z_2\) is on \({\mathbb {R}}\);

  • \(G_\beta (\cdot ,z_2)\) satisfies RH\(_\beta \) condition on \({\mathbb {R}}_r\).

All of these requirements easily follow from the properties presented above. We remark that \(G_\beta \) satisfies the asymmetric relation \(G_\beta (z_1,z_2)=G_{-\beta }(z_2,z_1)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, SS., Kang, NG. & Tak, HJ. Conformal field theory for annulus SLE: partition functions and martingale-observables. Anal.Math.Phys. 13, 1 (2023). https://doi.org/10.1007/s13324-022-00761-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00761-y

Keywords

Mathematics Subject Classification

Navigation