Skip to main content
Log in

Level sets of potential functions bisecting unbounded quadrilaterals

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the mixed Dirichlet–Neumann problem for the Laplace equation in the complement of a bounded convex polygonal quadrilateral in the extended complex plane. The Dirichlet / Neumann conditions at opposite pairs of sides are \(\{0,1\}\) and \(\{0,0\},\) resp. The solution to this problem is a harmonic function in the unbounded complement of the polygon known as the potential function of the quadrilateral. We compute the values of the potential function u including its value at infinity. The main result of this paper is Theorem 4.3 which yields a formula for \(u(\infty )\) expressed in terms of the angles of the polygonal given quadrilateral and the well-known special functions. We use two independent numerical methods to illustrate our result. The first method is a Mathematica program and the second one is based on using the MATLAB toolbox PlgCirMap. The case of a quadrilateral, which is the exterior of the unit disc with four fixed points on its boundary, is considered as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable, no new data was generated.

References

  1. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge Texts in Applied Mathematics, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  2. Ahlfors, L.V.: Conformal Invariants: Topics in Geometric Function Theory, vol. 371. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  3. Akhiezer, N.I.: Elements of the Theory of Elliptic Functions. Translations of Mathematical Monographs, vol. 79. American Mathematical Society, Providence (1990)

    MATH  Google Scholar 

  4. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities and Quasiconformal Maps. Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley, Hoboken (1997)

    MATH  Google Scholar 

  5. Bateman, H., Erdelyi, A.: Higher Transcendental Functions. Vol. 1 (1953)

  6. Driscoll, T.A., Trefethen, L.N.: Schwarz–Christoffel Mapping. Cambridge Monographs on Applied and Computational Mathematics, vol. 8. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  7. Dubinin, V.N.: Condenser Capacities and Symmetrization in Geometric Function Theory. Translated from the Russian by Nikolai G. Kruzhilin. Springer, Basel (2014)

  8. Garnett, J.B., Marshall, D.E.: Harmonic measure. Reprint of the 2005 original. New Mathematical Monographs, Vol. 2. Cambridge University Press, Cambridge. ISBN: 978-0-521-72060-1 (2008)

  9. Goluzin, G. M.: Geometric theory of functions of a complex variable. Translations of Mathematical Monographs, Vol. 26. American Mathematical Society, Providence, RI (1969)

  10. Hakula, H., Rasila, A., Vuorinen, M.: On moduli of rings and quadrilaterals: algorithms and experiments. SIAM J. Sci. Comput. 33(1), 279–302 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hakula, H., Rasila, A., Vuorinen, M.: Computation of exterior moduli of quadrilaterals. Electron. Trans. Numer. Anal. 40, 436–451 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Hariri, P., Klén, R., Vuorinen, M.: Conformally Invariant Metrics and Quasiconformal Mappings. Springer Monographs in Mathematics, Springer, Berlin (2020)

    Book  MATH  Google Scholar 

  13. Heikkala, V., Vamanamurthy, M.K., Vuorinen, M.: Generalized elliptic integrals. Comput. Methods Funct. Theory 9(1), 75–109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kythe, P.K.: Handbook of Conformal Mappings and Applications. CRC Press, Boca Raton (2019)

    Book  MATH  Google Scholar 

  15. Liesen, J., Séte, O., Nasser, M.M.S.: Fast and accurate computation of the logarithmic capacity of compact sets. Comput. Methods Funct. Theory 17(4), 689–713 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nasser, M., Rainio, O., Rasila, A., Vuorinen, M., Wallace, T., Yu, H., Zhang, X.: Polycircular domains, numerical conformal mappings, and moduli of quadrilaterals. Adv. Comput. Math. 48, 58 (2022). arXiv:2107.11485

  17. Nasser, M. M. S., Rainio, O., Vuorinen, M.: Condenser capacity and hyperbolic perimeter. Comput. Math. Appl. 105, 54–74 (2022) arXiv:2103.10237 [math.NA]

  18. Nasser, M.M.S.: PlgCirMap: a MATLAB toolbox for computing conformal mappings from polygonal multiply connected domains onto circular domains. SoftwareX 11, 100464 (2020)

    Article  Google Scholar 

  19. Nasser, M.M.S., Vuorinen, M.: Conformal invariants in simply connected domains. Comput. Methods Funct. Theory 20, 747–775 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nasyrov, S., Sugawa, T., Vuorinen, M.: Moduli of quadrilaterals and quasiconformal reflection. arXiv:2111.08304

  21. Papamichael, N., Stylianopoulos, N.: Numerical Conformal Mapping: Domain Decomposition and the Mapping of Quadrilaterals. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  22. Wala, M., Klockner, A.: Conformal mapping via a density correspondence for the double-layer potential. SIAM J. Sci. Comput. 40, A3715–A3732 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wegmann, R.: Methods for numerical conformal mapping. In: Kühnau, R. (ed.) Handbook of Complex Analysis: Geometric Function Theory, vol. 2, pp. 351–477. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

Download references

Funding

The work of the second author is performed under the development program of Volga Region Mathematical Center (agreement no. 075-02-2022-882). The first and third authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semen Nasyrov.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasser, M.M.S., Nasyrov, S. & Vuorinen, M. Level sets of potential functions bisecting unbounded quadrilaterals. Anal.Math.Phys. 12, 149 (2022). https://doi.org/10.1007/s13324-022-00732-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00732-3

Keywords

Mathematics Subject Classification

Navigation