Skip to main content
Log in

Multiplicity and concentration results for generalized quasilinear Schrödinger equations with nonlocal term

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is concerned with the following generalized quasilinear Schrödinger equation with nonlocal term

$$\begin{aligned} -\varepsilon ^2\hbox {div}(g^2(u)\nabla u)\!+\!\varepsilon ^2g(u)g^\prime (u)|\nabla u|^2\!+\!V(x)u\!=\!\varepsilon ^{\mu -N}[|x|^{-\mu }\!*\!|u|^p]|u|^{p-2}u\!+\!f(u) \end{aligned}$$

for \(x\in \mathbb {R}^{N}\), where \(N\ge 3\), \(\varepsilon >0\), \(g: \mathbb {R}\rightarrow \mathbb {R}^+\) is a bounded \(C^1\) even function, \(g(0)=1\), \(g^\prime (s)\ge 0\) for all \(s\ge 0\), \(\lim \nolimits _{|s|\rightarrow +\infty }\frac{g(s)}{|s|^{\alpha -1}}:=\beta >0\) for some \(\alpha \in [1,2]\) and \((\alpha -1)g(s)\ge g^\prime (s)s\) for all \(s\ge 0\), \(2\alpha \le p< \frac{2\alpha (N-\mu )}{N-2}\), \(0<\mu <N\). By using the variational methods and Ljusternik-Schnirelmann category theory, we establish the existence, multiplicity of semi-classical solutions and characterize the concentration behavior and exponential decay property for the above problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aires, J.F.L., Souto, M.A.S.: Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials. J. Math. Anal. Appl. 416, 924–946 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., Cassani, D., Tarsi, C., Yang, M.: Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \(\mathbb{R}^2\). J. Differ. Equ. 261, 1933–1972 (2016)

    Article  MATH  Google Scholar 

  3. Alves, C.O., Yang, M.: Multiplicity and concentration of solutions for a quasilinear Choquard equation. J. Math. Phys. 55, 061502 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alves, C.O., Yang, M.: Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257, 4133–4164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alves, C.O., Yang, M.: Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method. Proc. Roy. Soc. Edinburgh Sect. A 146, 23–58 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergé, L., Couairon, A.: Nonlinear propagation of self-guided ultra-short pulses in ionized gases. Phys. Plasmas 7, 210–230 (2000)

    Article  Google Scholar 

  7. Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233–248 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clapp, M., Salazar, D.: Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl. 407, 1–15 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, J., Huang, X., Qin, D., Cheng, B.: Existence and asymptotic behavior of standing wave solutions for a class of generalized quasilinear Schrödinger equations with critical Sobolev exponents. Asymptot. Anal. 1, 1–50 (2019)

    Google Scholar 

  10. Chen, J., Tang, X., Cheng, B.: Non-Nehari manifold method for a class of generalized quasilinear Schrödinger equations. Appl. Math. Lett. 74, 20–26 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J., Tang, X., Cheng, B.: Ground state sign-changing solutions for a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation. J. Fixed Point Theory Appl. 19, 3127–3149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, J., Tang, X., Cheng, B.: Existence and nonexistence of positive solutions for a class of generalized quasilinear Schrödinger equations involving a Kirchhoff-type perturbation with critical Sobolev exponent. J. Math. Phys. 59, 021505 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, S., Rădulescu, V., Tang, X., Zhang, B.: Ground state solutions for quasilinear Schrödinger equations with variable potential and superlinear reaction. Rev. Mat. Iberoam. 36, 1549–1570 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, S., Zhang, B., Tang, X.: Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Adv. Nonlinear Anal. 9, 148–167 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  Google Scholar 

  16. Deng, Y., Peng, S., Yan, S.: Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J. Differ. Equ. 260, 1228–1262 (2016)

    Article  MATH  Google Scholar 

  17. Ghimenti, M., Van Schaftingen, J.: Nodal solutions for the Choquard equation. J. Funct. Anal. 271, 107–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(\mathbb{R}^3\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  MATH  Google Scholar 

  19. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’ nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976)

    Article  MathSciNet  Google Scholar 

  20. Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lieb, E. H., Loss, M.: Analysis, 2nd edition, Grad. Stud. Math. Vol. 14, Amer. Math. Soc. Providence, RI, (2001)

  22. Litvak, A.G.: Self-focusing of powerful light beams by thermal effects. JETP Lett. 4, 230–232 (1966)

    Google Scholar 

  23. Li, Q., Wu, X.: Multiple solutions for generalized quasilinear Schrödinger equations. Math. Methods Appl. Sci. 40, 1359–1366 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Q., Wu, X.: Existence, multiplicity, and concentration of solutions for generalized quasilinear Schrödinger equations with critical growth. J. Math. Phys. 58, 041501 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Q., Wu, X.: Existence of nontrivial solutions for generalized quasilinear Schrödinger equations with critical or supercritical growths. Acta Math. Sci. 37, 1870–1880 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moser, J.: A new proof of De Giorgi’ s theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math. 13, 457–468 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moroz, V., Van Schaftingen, J.: Semi-classical states for the Choquard equation. Calc. Var. Partial Differ. Equ. 52, 199–235 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Commun. Contemp. Math. 17(5), 1550005 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pekar, S.: Untersuchungen über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    Book  MATH  Google Scholar 

  33. Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravitat. 28, 581–600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Peral, I.: Multiplicity of solutions for the \(p\)-Laplacian, in: Lecture Notes at the Second School on Nonlinear Functional Analysis and Applications to Differential Equations at ICTP of Trieste, April 21-May 9, (1997)

  35. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  36. Rabinowitz, P.: On a class of nonlinear Schrödinger equations. Z. Ang. Math. Phys. 43, 270–291 (1992)

    Article  MATH  Google Scholar 

  37. Shen, Y., Wang, Y.: Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal. 80, 194–201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27, 187–207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Trudinger, N.S.: On Harnack type inequalities and their applications to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tang, X., Chen, S.: Ground state solutions of Nehari-Pohoz̆aev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differ. Equ. 56, 110 (2017)

    Article  MATH  Google Scholar 

  41. Tang, X., Cheng, B.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 261, 2384–2402 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tao, F., Wu, X.: Existence and multiplicity of positive solutions for fractional Schrödinger equations with critical growth. Nonlinear Anal. 35, 158–174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Willem, M.: Minimax Theorem. Birkhäuser Boston Inc, Boston, MA (1996)

    Book  MATH  Google Scholar 

  44. Wei, J., Winter, M.: Strongly interacting bumps for the Schrödinger-Newton equations. J. Math. Phys. 50, 012905 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xiang, M., Rădulescu, V., Zhang, B.: Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities. ESAIM Control Optim. Calc. Var. 24, 1249–1273 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiang, M., Rădulescu, V., Zhang, B.: A critical fractional Choquard-Kirchhoff problem with magnetic field. Commun. Contemp. Math. 21, 1850004 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xiang, M., Rădulescu, V., Zhang, B.: Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity. Calc. Var. Partial Differ. Equ. 58, 57 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, J., Zhang, W.: Semiclassical states for coupled nonlinear Schrödinger system with competing potentials. J. Geom. Anal. 32, 114 (2022)

    Article  MATH  Google Scholar 

  49. Zhang, J., Zhang, W., Tang, X.: Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete Contin. Dyn. Syst. 37, 4565–4583 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, J., Zhang, W., Xie, X.: Infinitely many solutions for a gauged nonlinear Schrödinger equation. Appl. Math. Lett. 88, 21–27 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, W., Zhang, J., Mi, H.: Ground states and multiple solutions for Hamiltonian elliptic system with gradient term. Adv. Nonlinear Anal. 10, 331–352 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of Quanqing Li was supported by the National Natural Science Foundation of China (11801153, 12026227, 12026228), the Yunnan Province Applied Basic Research for Youths (2018FD085), the Yunnan Province Applied Basic Research for General Project (2019FB001), and the Youth Outstanding-notch Talent Support Program in Yunnan Province. The research of Jian Zhang was supported by the Natural Science Foundation of Hunan Province (2021JJ30189), the Key project of Scientific Research Project of Department of Education of Hunan Province (21A0387), the China Scholarship Council (201908430218) for visiting the University of Craiova (Romania), and Funding scheme for Young Backbone Teachers of universities in Hunan Province (Hunan Education Notification (2018) no. 574). Jian Zhang would like to thank the China Scholarship Council and the Embassy of the People’s Republic of China in Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhang, J., Nie, J. et al. Multiplicity and concentration results for generalized quasilinear Schrödinger equations with nonlocal term. Anal.Math.Phys. 12, 82 (2022). https://doi.org/10.1007/s13324-022-00693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00693-7

Keywords

Mathematics Subject Classification

Navigation