Skip to main content
Log in

Infinitesimal generators of semigroups with prescribed boundary fixed points

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study infinitesimal generators of one-parameter semigroups in the unit disk \(\mathbb {D}\) having prescribed boundary regular fixed points. Using an explicit representation of such infinitesimal generators in combination with Krein–Milman Theory we obtain new sharp inequalities relating spectral values at the fixed points with other important quantities having dynamical meaning. We also give a new proof of the classical Cowen–Pommerenke inequalities for univalent self-maps of \(\mathbb {D}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abate, M.: Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Rende (1989)

    MATH  Google Scholar 

  2. Anderson, J.M., Vasil’ev, A.: Lower Schwarz–Pick estimates and angular derivatives. Ann. Acad. Sci. Fenn. Math. 33, 101–110 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Bauer, R.O.: Chordal Loewner families and univalent Cauchy transforms. J. Math. Anal. Appl. 302, 484–501 (2005)

    Article  MathSciNet  Google Scholar 

  4. Berkson, E., Porta, H.: Semigroups of holomorphic functions and composition operators. Mich. Math. J. 25, 101–115 (1978)

    Article  Google Scholar 

  5. Bhatia, R.: Matrix Analysis, Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)

    Google Scholar 

  6. Bolotnikov, V., Elin, M., Shoikhet, D.: Inequalities for angular derivatives and boundary interpolation. Anal. Math. Phys. 3, 63–96 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Evolution families and the Loewner equation I: the unit disc. J. Reine Angew. Math. (Crelle’s J.) 672, 1–37 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: On the Koenigs function of semigroups of holomorphic self-maps of the unit disc. Anal. Math. Phys. 8, 521–540 (2018)

    Article  MathSciNet  Google Scholar 

  9. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Continuous Semigroups of Holomorphic Functions in the Unit Disc. Springer Monographs in Mathematics. Springer, Berlin (2020)

    Book  Google Scholar 

  10. Bracci, F., Contreras, M.D., Díaz-Madrigal, S., Gumenyuk, P.: Boundary regular fixed points in Loewner theory. Ann. Mat. Pura Appl. (4) 194, 221–245 (2015)

    Article  MathSciNet  Google Scholar 

  11. Contreras, M.D., Díaz-Madrigal, S.: Analytic flows in the unit disk: angular derivatives and boundary fixed points. Pac. J. Math. 222, 253–286 (2005)

    Article  Google Scholar 

  12. Contreras, M.D., Díaz-Madrigal, S., Pommerenke, Ch.: Fixed points and boundary behavior of the Koenigs function. Ann. Acad. Sci. Fenn. Math. 29, 471–488 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Contreras, M.D., Díaz-Madrigal, S., Pommerenke, Ch.: On boundary critical points for semigroups of analytic functions. Math. Scand. 98, 125–142 (2006)

    Article  MathSciNet  Google Scholar 

  14. Cowen, C.C., Pommerenke, C.: Inequalities for the angular derivative of an analytic function in the unit disk. J. Lond. Math. Soc. (2) 26, 271–289 (1982)

    Article  MathSciNet  Google Scholar 

  15. Duren, P.L.: Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259. Springer, New York (1983)

    Google Scholar 

  16. Elin, M., Shoikhet, D.: Linearization Models for Complex Dynamical Systems. Topics in Univalent Functions, Functional Equations and Semigroup Theory. Birkhäuser, Basel (2010)

    MATH  Google Scholar 

  17. Elin, M., Shoikhet, D., Tarkhanov, N.: Separation of boundary singularities for holomorphic generators. Ann. Mat. Pura Appl. 190, 595–618 (2011)

    Article  MathSciNet  Google Scholar 

  18. Ferguson, T.S.: Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York (1967)

    MATH  Google Scholar 

  19. Frolova, A., Levenshtein, M., Shoikhet, D., Vasil’ev, A.: Boundary distortion estimates for holomorphic maps. Complex Anal. Oper. Theory 8, 1129–1149 (2014)

    Article  MathSciNet  Google Scholar 

  20. Franz, U., Hasebe, T., Schleißinger, S.: Monotone Increment Processes, Classical Markov Processes and Loewner Chains. Preprint. ArXiV:1811.02873

  21. Holland, F.: The extreme points of a class of functions with positive real part. Math. Ann. 202, 85–87 (1973)

    Article  MathSciNet  Google Scholar 

  22. Goryainov, V.V.: Semigroups of analytic functions in analysis and applications. Russ. Math. Surv. 67(6), 975–1021 (2012) (translated from Uspekhi Mat. Nauk 67 (2012), no. 6(408), 5–52)

  23. Goryainov, V.V.: Holomorphic mappings of the unit disc into itself with two fixed points. Mat. Sb. 208(3), 54–71 (2017) (in Russian) (translation in Sb. Math., 208 (2017). No. 3, 360–376)

  24. Goryainov, V.V., Ba, I.: Semigroups of conformal mappings of the upper half-plane into itself with hydrodynamic normalization at infinity. Ukr. Math. J. 44, 1209–1217 (1992)

    Article  MathSciNet  Google Scholar 

  25. Goryainov, V.V., Kudryavtseva, O.S.: One-parameter semigroups of analytic functions, fixed points and the Koenigs function. Mat. Sb. 202(7), 43–74 (2011) (in Russian) (translation to English in Sbornik: Mathematics, 202 (2011), No. 7, 971–1000)

  26. Gumenyuk, P.: Angular and unrestricted limits of one-parameter semigroups in the unit disk. J. Math. Anal. Appl. 417, 200–224 (2014)

    Article  MathSciNet  Google Scholar 

  27. Gumenyuk, P.: Parametric representation of univalent functions with boundary regular fixed points. Constr. Approx. 46, 435–458 (2017)

    Article  MathSciNet  Google Scholar 

  28. Gumenyuk, P.: Parametric representations and boundary fixed points of univalent self-maps of the unit disk. In: Bracci, F. (ed.) Geometric Function Theory in Higher Dimension. Springer INdAM Series, vol. 26, pp. 67–85. Springer, Cham (2017)

    Chapter  Google Scholar 

  29. Gumenyuk, P., Prokhorov, D.: Value regions of univalent self-maps with two boundary fixed points. Ann. Acad. Sci. Fenn. Math. 43, 451–462 (2018)

    Article  MathSciNet  Google Scholar 

  30. Kadets, V.M.: A course in functional analysis (Russian), Khar’kovskiĭ Natsional’nyĭ Universitet imeni V. N. Karazina, Kharkiv: MR2268285. English translation: V, p. 2018. A course in functional analysis and measure theory, Universitext, Springer, Cham, Kadets (2006)

  31. Kyprianou, A.E.: Introductory Lectures on Fluctuations of Lévy Processes with Applications, Universitext. Springer, Berlin (2006)

    MATH  Google Scholar 

  32. Pommerenke, Ch.: Univalent Functions. Vandenhoeck and Ruprecht, Göttingen (1975)

    MATH  Google Scholar 

  33. Pommerenke, Ch.: Boundary Behaviour of Conformal Mappings. Springer, Berlin (1992)

    Book  Google Scholar 

  34. Sarason, D.: Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 10. Wiley, New York (1994)

    Google Scholar 

  35. Shoikhet, D.: Representations of holomorphic generators and distortion theorems for spirallike functions with respect to a boundary point. Int. J. Pure Appl. Math. 5, 335–361 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Shoikhet, D.: Semigroups in Geometrical Function Theory. Kluwer Academic Publishers, Dordrecht (2001)

    Book  Google Scholar 

  37. Valiron, G.: Fonctions analytiques. Presses Universitaires de France, Paris (1954)

    MATH  Google Scholar 

  38. von Weizsäcker, H., Winkler, G.: Integral Representation in the Set of Solutions of a Generalized Moment Problem. Math. Ann. 246, 23–32 (1979/1980)

  39. Winkler, G.: Extreme points of moment sets. Math. Oper. Res. 13, 581–587 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Díaz-Madrigal.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by the Ministerio de Economía y Competitividad and the European Union (FEDER) PGC2018-094215-B-100 and by La Junta de Andalucía, FQM-133.

Appendix

Appendix

For completeness, we give proofs of some elementary facts used in the paper.

Proof of Lemma 7.2

Let \(\varphi \in {{\mathfrak {U}}}_{\tau }[F]\). Fix some \(\sigma _j,\sigma _k\in F\), \(j\ne k\). Choose any \(C^1\)-smooth Jordan arc \(\Gamma \subset {\overline{\mathbb {D}}}\setminus \{\tau \}\) joining \(\sigma _j\) with \(\sigma _k\) and orthogonal to \(\partial \mathbb {D}\) at these points.

Note that \({\widetilde{\Gamma }}:=\varphi (\Gamma )\) satisfies the same requirements imposed on \(\Gamma \). Let us show that \(\Gamma \) and \({\widetilde{\Gamma }}\) are homotopic relative to end-points in \({\mathbb {C}}\setminus \{\tau \}\). Denote by \(D_1\) and \(D_2\) the two connected components of \(\mathbb {D}\setminus \Gamma \), with \(\tau \in D_2\), and let \(C_1\) and \(C_2\) be the two complementary arcs of \(\partial \mathbb {D}\) such that \(C_j\subset \partial D_j\), \(j=1,2\). In particular, \(\Gamma \) is homotopic in \({\mathbb {C}}\setminus \{\tau \}\) relative to the end-points to \(C_1\).

Furthermore, let \({\widetilde{D}}_1\) and \({\widetilde{D}}_2\) stand for the two connected components of \({\mathbb {D}\setminus {\widetilde{\Gamma }}}\), numbered in such a way that \(C_j\subset \partial {\widetilde{D}}_j\), \(j=1,2\). Using the conformality at \(\sigma _j\) of \(\varphi \) restricted to a Stolz angle, we see that the \(\varphi (D_1)\) intersects \({\widetilde{D}}_1\), and \(\varphi (D_2)\) intersects \({\widetilde{D}}_2\). Since \(\varphi :\mathbb {D}\rightarrow \mathbb {D}\) is a homemorphism onto its image, it follows that \(\varphi (D_j)\subset {\widetilde{D}}_j\), \(j=1,2\). In particular, \(\tau =\varphi (\tau )\in \varphi (D_2)\subset {\widetilde{D}}_2\) and hence \(\tau \not \in {\widetilde{D}}_1\). It follows that relative to end-points \({\widetilde{\Gamma }}\) is homotopic in \({\mathbb {C}}\setminus \{\tau \}\) to \(C_1\) and hence to \(\Gamma \). Therefore, for \(\Phi (z):=(\varphi (z)-\tau )/(z-\tau )\) we have

$$\begin{aligned} \int _\Gamma \frac{\Phi '(z)}{\Phi (z)}\,\mathrm {d}z=\int _{{\widetilde{\Gamma }}}\frac{\,\mathrm {d}w}{w-\tau }-\int _{\Gamma }\frac{\,\mathrm {d}z}{z-\tau }=0. \end{aligned}$$

All the above integrals exist because \(\tau \not \in \Gamma \cup {\widetilde{\Gamma }}\) and because \(\varphi \) is of class \(C^1\) on \(\Gamma \) including the end-points.

The above argument is valid for any two distinct points \(\sigma _j,\sigma _k\in F\). Taking into account that \(\Phi \) is holomorphic and non-vanishing in \(\mathbb {D}\), it follows that \(\Phi '/\Phi \) admits an antiderivative in \(\mathbb {D}\) that has vanishing angular limits at every point of F, and this is the desired single-valued branch of \(\log \Phi \). This proves part (A).

To prove part (B), note that continuity of \(t\mapsto \varphi _t(z)\) for each \(z\in \mathbb {D}\) is equivalent to continuity of \(t\mapsto \varphi _t\in \mathsf {Hol}(\mathbb {D},\mathbb {C})\) in the open-compact topology because all holomorphic self-maps of \(\mathbb {D}\) form a normal family. Therefore, for any \(t_0\in I\) the limit

$$\begin{aligned} \lim _{I\ni t\rightarrow t_0}\exp F_t,\quad \text {where }F_t:=\Psi [\varphi _t]-\Psi [\varphi _{t_0}], \end{aligned}$$

exists in the open-compact topology and equals 1 identically in \(\mathbb {D}\). Moreover, note that

$$\begin{aligned} \lim _{r\rightarrow 1^-} F_t(r\sigma _{k_0})=0\quad \text {for all }t\in I. \end{aligned}$$
(8.1)

Since by the hypothesis, for some \(\delta >0\), the function \({t\mapsto \varphi '_t(\sigma _{k_0})}\) is bounded on \(I_\delta :=I\cap (t_0-\delta ,t_0+\delta )\), using Julia’s Lemma 2.1 we see that for any \(\varepsilon >0\) there exists \(r_\varepsilon \in (0,1)\) such that \(\gamma _\varepsilon :=[r_\varepsilon \sigma _{k_0},\sigma _{k_0})\) and \(\varphi _t(\gamma _\varepsilon )\) lie in the disk \(D_\varepsilon :=\{z:|z-(1-\varepsilon )\sigma _{k_0}|\leqslant \varepsilon \}\subset \mathbb {D}\) for all \(t\in I_\delta \).

Clearly we can choose \(\varepsilon >0\) small enough, so that \(\tau \not \in D_\varepsilon \) and

$$\begin{aligned} \max _{z,w\in D_\varepsilon }\big |\log (z-\tau )-\log (w-\tau )\big |=:C<\pi \end{aligned}$$
(8.2)

for some (and hence any) choice of the single-valued branch of \(\log (z-\tau )\) in \(D_\varepsilon \).

Combining (8.1) and (8.2), we see that \(|F_t(r_\varepsilon \sigma _{k_0})|\leqslant 2C<2\pi \) for all \(t\in I_\delta \). Recalling that \(\exp F_t(z)\rightarrow 1\) locally uniformly in \(\mathbb {D}\) as \(I\ni t\rightarrow t_0\), we conclude that \(F_t\rightarrow 0\) locally uniformly in \(\mathbb {D}\) as \(I\ni t\rightarrow t_0\), which completes the proof of (B). \(\square \)

Next lemma shows that the harmonic mean is concave. We include its proof for the sake of completeness.

Lemma 8.1

For any \(n\in \mathbb {N}\) the function \(Q(x_1,\ldots x_n):=\Big (\sum _{j=1}^n x_j^{-1}\Big )^{-1}\) is concave on \((0,+\infty )^n\).

Proof

The assertion of the lemma holds trivially for \(n=1\). So we suppose that \(n\geqslant 2\).

The entries of the Hessian matrix \(A({\mathbf {x}})=[a_{jk}({\mathbf {x}})], {\mathbf {x}}:=(x_1,x_2,\ldots ,x_n)\), for the function Q are given by

$$\begin{aligned}&a_{jk}({{\mathbf {x}}})=\frac{2Q({{\mathbf {x}}})^3}{x_j^2x_k^2}b_{jk}({{\mathbf {x}}}),\\&\quad \text {where }b_{jk}({{\mathbf {x}}}):=1-\delta _{jk}\frac{x_j}{Q({{\mathbf {x}}})} ~\text { and } \delta _{jk} \text { is the Kronecker symbol.} \end{aligned}$$

First we show that \(\det A({{\mathbf {x}}})=0\). Clearly, the latter is equivalent to \(\det B({{\mathbf {x}}})=0\), where \(B({{\mathbf {x}}}):=[b_{jk}({{\mathbf {x}}})]\).

Subtract the last row of \(B({{\mathbf {x}}})\) from each of the other rows. In the matrix we obtain, add to the last row the linear combination of all the other rows in which, for every \(j=1,2,\ldots ,n-1\), the coefficient of the j-th row is equal to \(Q({{\mathbf {x}}})/x_j\). The resulting matrix is upper-triangular, with the last diagonal entry equal to

$$\begin{aligned} 1-\frac{x_n}{Q({{\mathbf {x}}})}+\frac{x_n}{Q({{\mathbf {x}}})}\sum _{j=1}^{n-1}\frac{Q({{\mathbf {x}}})}{x_j}=1-\sum _{j=1}^n \frac{x_n}{x_j}+\sum _{j=1}^{n-1} \frac{x_n}{x_j}=0. \end{aligned}$$

Therefore, the determinant equals zero.

This argument, with an obvious modification, can be used to show that the determinants of all symmetric minors of \(A({{\mathbf {x}}})\), i.e. minors of the form \([a_{jk}({{\mathbf {x}}})]_{j,k\in J}\), \(J\subset \{1,2,\ldots ,n\}\), vanish, except for the symmetric minors of order one. They are simply diagonal entries of A, which are all negative. Therefore, according to Sylvester’s well-known criterion, the matrix \(A({{\mathbf {x}}})\) is negative semi-definite for any \({{\mathbf {x}}}\in (0,+\infty )^n\), which was to be proved. \(\square \)

Lemma 8.2

Let Q be defined as in Lemma 8.1. Let \({{\mathbf {x}}},{\mathbf {y}}\in (0,+\infty )^n\), \({{\mathbf {x}}}\ne {\mathbf {y}}\). If

$$\begin{aligned} \lambda Q({{\mathbf {x}}})+(1-\lambda )Q({\mathbf {y}})=Q\big (\lambda {{\mathbf {x}}} + (1-\lambda ){\mathbf {y}}\big ) \end{aligned}$$
(8.3)

for some \(\lambda \in (0,1)\), then \({{\mathbf {x}}}=\mu {\mathbf {y}}\) for some \(\mu \in \mathbb {R}\).

Proof

Since by Lemma 8.1, Q is concave on \((0,+\infty )\), equality (8.3) for some \(\lambda \in (0,1)\) implies the same equality for all \(\lambda \in [0,1]\). Notice that the r.h.s. of (8.3), \(f(\lambda ):=Q\big (\lambda {{\mathbf {x}}} + (1-\lambda ){\mathbf {y}}\big )\) is a rational function of \(\lambda \). Therefore, extending f, as usual, to its removable singularities by continuity, we may conclude that \(f(\lambda )=a\lambda +b\) for some \(a,b\in \mathbb {R}\) and all \(\lambda \in \mathbb {R}\). On the one hand, a function of this form has at most one zero. On the other hand, taking into account that for \(\lambda =0\) all the components of the vector \({{\mathbf {x}}}_\lambda :=\lambda {{\mathbf {x}}} + (1-\lambda ) {\mathbf {y}}\) are positive, it is easy to see that \(f(\lambda )=0\) for each \(\lambda \in \mathbb {R}\) such that at least one component of \({{\mathbf {x}}}_\lambda \) vanishes.

All non-vanishing components of \({\mathbb {R}\ni \lambda \mapsto {{\mathbf {x}}}_\lambda }\) are positive constants. Therefore, if such components exist, then \(a=0\) and hence \(f(\lambda )\equiv Q({\mathbf {y}})>0\). It follows that if at least one of the components is non-vanishing, then \(f(\lambda )\) does not vanish, which means that, in fact, all the components of \({\mathbb {R}\ni \lambda \mapsto {{\mathbf {x}}}_\lambda }\) are non-vanishing. This in turn would imply that \({{\mathbf {x}}}={\mathbf {y}}\) in contradiction to the hypothesis.

Thus we may conclude that all the components of \({{\mathbf {x}}}_\lambda \) vanish for the same value of \(\lambda \) and the desired conclusion follows immediately. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, M.D., Díaz-Madrigal, S. & Gumenyuk, P. Infinitesimal generators of semigroups with prescribed boundary fixed points. Anal.Math.Phys. 10, 36 (2020). https://doi.org/10.1007/s13324-020-00378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00378-z

Keywords

Mathematics Subject Classification

Navigation