Skip to main content
Log in

Optimal and non-optimal lattices for non-completely monotone interaction potentials

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the minimization of the energy per point \(E_f\) among d-dimensional Bravais lattices, depending on the choice of pairwise potential equal to a radially symmetric function \(f(|x|^2)\). We formulate criteria for minimality and non-minimality of some lattices for \(E_f\) at fixed scale based on the sign of the inverse Laplace transform of f when f is a superposition of exponentials, beyond the class of completely monotone functions. We also construct a family of non-completely monotone functions having the triangular lattice as the unique minimizer of \(E_f\) at any scale. For Lennard-Jones type potentials, we reduce the minimization problem among all Bravais lattices to a minimization over the smaller space of unit-density lattices and we establish a link to the maximum kissing problem. New numerical evidence for the optimality of particular lattices for all the exponents are also given. We finally design one-well potentials f such that the square lattice has lower energy \(E_f\) than the triangular one. Many open questions are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aftalion, A., Blanc, X., Nier, F.: Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates. J. Funct. Anal. 241, 661–702 (2006)

    Google Scholar 

  2. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296(1), 625–635 (1993)

    Google Scholar 

  3. Bernstein, S.: Sur les Fonctions Absolument Monotones. Acta Math. 52, 1–66 (1929)

    Google Scholar 

  4. Bétermin, L.: Two-dimensional Theta functions and crystallization among Bravais lattices. SIAM J. Math. Anal. 48(5), 3236–3269 (2016)

    Google Scholar 

  5. Bétermin, L.: Local optimality of cubic lattices for interaction energies. Anal. Math. Phys. 9(1), 403–426 (2017). https://doi.org/10.1007/s13324-017-0205-5

    Google Scholar 

  6. Bétermin, L.: Local variational study of 2d lattice energies and application to Lennard–Jones type interactions. Nonlinearity 31(9), 3973–4005 (2018)

    Google Scholar 

  7. Bétermin, L.: Minimal soft lattice theta functions. arXiv:1809.00473 (2018)

  8. Bétermin, L.: Minimizing lattice structures for Morse potential energy in two and three dimensions. arXiv:1901.08957 (2018)

  9. Bétermin, L., Knüpfer, H.: Optimal lattice configurations for interacting spatially extended particles. Lett. Math. Phys. 108(10), 2213–2228 (2018)

    Google Scholar 

  10. Bétermin, L., Knüpfer, H., Nolte, F.: Crystallization of one-dimensional alternating two-components systems. arXiv:1804.05743 (2018)

  11. Bétermin, L., Petrache, M.: Dimension reduction techniques for the minimization of theta functions on lattices. J. Math. Phys. 58, 071902 (2017)

    Google Scholar 

  12. Bétermin, L., Zhang, P.: Minimization of energy per particle among Bravais lattices in \({\mathbb{R}}^2\): Lennard–Jones and Thomas–Fermi cases. Commun. Contemp. Math. 17(6), 1450049 (2015)

    Google Scholar 

  13. Blanc, X.: Geometry optimization for crystals in Thomas–Fermi type theories of solids. Commun. Partial Differ. Equ. 26(3–4), 651–696 (2001)

    Google Scholar 

  14. Blanc, X., Le Bris, C.: Periodicity of the infinite-volume ground state of a one-dimensional quantum model. Nonlinear Anal. TMA 48(6), 791–803 (2002)

    Google Scholar 

  15. Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)

    Google Scholar 

  16. Bochner, S.: Theta relations with spherical harmonics. Proc. Natl. Acad. Sci. USA 37(12), 804–808 (1951)

    Google Scholar 

  17. Brauchart, J.B., Hardin, D.P., Saff, E.B.: Discrete energy asymptotics on a Riemannian circle. Unif. Distrib. Theory 7(2), 77–108 (2012)

    Google Scholar 

  18. Cassels, J.W.S.: On a problem of Rankin about the Epstein Zeta-function. Proc. Glasg. Math. Assoc. 4, 73–80 (1959)

    Google Scholar 

  19. Choi, Y., Ree, T.: Phase diagram of a Lennard–Jones solid. J. Chem. Phys. 99, 9917 (1993)

    Google Scholar 

  20. Cohn, H., Elkies, N.: New upper bounds on sphere packings I. Ann. Math. 157, 689–714 (2003)

    Google Scholar 

  21. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007)

    Google Scholar 

  22. Cohn, H., Kumar, A.: Counterintuitive ground states in soft-core models. Phys. Rev. E (3) 78(6), 061113 (2008). 7

    Google Scholar 

  23. Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.: The sphere packing problem in dimension 24. Ann. Math. 185(3), 1017–1033 (2017)

    Google Scholar 

  24. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, vol. 290. Springer, Berlin (1999)

    Google Scholar 

  25. Coulangeon, R.: Spherical designs and zeta functions of lattices. Int. Math. Res. Not. 16, 49620 (2006)

    Google Scholar 

  26. Coulangeon, R., Lazzarini, G.: Spherical designs and heights of Euclidean lattices. J. Number Theory 141, 288–315 (2014)

    Google Scholar 

  27. Coulangeon, R., Schürmann, A.: Energy minimization, periodic sets and spherical designs. Int. Math. Res. Not. 2012(4), 829–848 (2012)

  28. Coulangeon, R., Schürmann, A.: Local energy optimality of periodic sets. arXiv:1802.02072 (2018)

  29. Diananda, P.H.: Notes on two lemmas concerning the Epstein Zeta-function. Proc. Glasg. Math. Assoc. 6, 202–204 (1964)

    Google Scholar 

  30. De Luca, L., Friesecke, G.: Crystallization in two dimensions and a discrete Gauss–Bonnet theorem. J. Nonlinear Sci. 28(1), 69–90 (2018)

    Google Scholar 

  31. Ennola, V.: A lemma about the Epstein Zeta-function. Proc. Glasg. Math. Assoc. 6, 198–201 (1964)

    Google Scholar 

  32. Ennola, V.: On a problem about the Epstein Zeta-function. Math. Proc. Camb. Philos. Soc. 60, 855–875 (1964)

    Google Scholar 

  33. Flatley, L., Theil, F.: Face-centred cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 219(1), 363–416 (2015)

    Google Scholar 

  34. Gardner, C.S., Radin, C.: The infinite-volume ground state of the Lennard–Jones potential. J. Stat. Phys. 20, 719–724 (1979)

    Google Scholar 

  35. Gardner, C.S., Radin, C.: The infinite-volume ground state of the Lennard–Jones potential. J. Stat. Phys. 20(6), 719–724 (1979)

    Google Scholar 

  36. Georgakopoulos, A., Kolountzakis, M.: On particles in equilibrium on the real line. Proc. Am. Math. Soc. 145(8), 3501–3511 (2017)

    Google Scholar 

  37. Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. 162(3), 1065–1185 (2005)

    Google Scholar 

  38. Hamrick, G.C., Radin, C.: The symmetry of ground states under perturbation. J. Stat. Phys. 21(5), 601–607 (1979)

    Google Scholar 

  39. Heitmann, R.C., Radin, C.: The ground state for sticky disks. J. Stat. Phys. 22, 281–287 (1980)

    Google Scholar 

  40. Kaplan, I.G.: Intermolecular Interactions : Physical Picture, Computational Methods, Model Potentials. Wiley, New York (2006)

    Google Scholar 

  41. Katsurada, M.: Complete asymptotic expansions associated with Epstein zeta-functions. Ramanujan J. 14, 249–272 (2007)

    Google Scholar 

  42. Kusner, R., Kusner, W., Lagarias, J.C., Shlosman, S.: The twelve spheres problem. arXiv:1611.10297 (2016)

  43. Leblé, T.: A uniqueness result for minimizers of the 1D Log-gas renormalized energy. J. Funct. Anal. 268(7), 1649–1677 (2015)

    Google Scholar 

  44. Mainini, E., Piovano, P., Stefanelli, U.: Finite crystallization in the square lattice. Nonlinearity 27, 717–737 (2014)

    Google Scholar 

  45. Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Commun. Math. Phys. 328, 545–571 (2014)

    Google Scholar 

  46. Marcotte, E., Stillinger, F.H., Torquato, S.: Unusual ground states via monotonic convex pair potentials. Chem. Phys. 134, 164105 (2011)

    Google Scholar 

  47. Mie, G.: Zur kinetischen Theorie der einatomigen Körper. Ann. der Physik 316(8), 657–697 (1903)

    Google Scholar 

  48. Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A.: Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47, 353–389 (2003)

    Google Scholar 

  49. Montgomery, H.L.: Minimal theta functions. Glasg. Math. J. 30(1), 75–85 (1988)

    Google Scholar 

  50. Mueller, E.J., Ho, T.-L.: Two-component Bose-Einstein condensates with a large number of vortices. Phys. Rev. Lett. 88(18), 180403 (2002)

    Google Scholar 

  51. Musin, O.R.: The kissing number in four dimensions. Ann. Math. 168, 1–32 (2008)

    Google Scholar 

  52. Neumann, K.: Allgemeine Untersuchungen über das Newton’sche Princip der Fernwirkungen mit besonderer Rücksicht auf die elektrischen Wirkungen. Teubner, Leipzig (1896)

    Google Scholar 

  53. Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80, 148–211 (1988)

    Google Scholar 

  54. Petrache, M., Serfaty, S.: Next order asymptotics and renormalized energy for Riesz interactions. J. Inst. Math. Jussieu 16(3), 501–569 (2017)

    Google Scholar 

  55. Poole, C.: Encyclopedic Dictionary of Condensed Matter Physics, 1st edn. Elsevier, London (2004)

    Google Scholar 

  56. Radin, C.: The ground state for soft disks. J. Stat. Phys. 26(2), 365–373 (1981)

    Google Scholar 

  57. Radin, C.: Classical ground states in one dimension. J. Stat. Phys. 35(1), 109–117 (1984)

    Google Scholar 

  58. Radin, C.: Low temperature and the origin of crystalline symmetry. Int. J. Mod. Phys. B 1(05n06), 1157–1191 (1987)

    Google Scholar 

  59. Rankin, R.A.: A minimum problem for the Epstein Zeta-function. Proc. Glasg. Math. Assoc. 1, 149–158 (1953)

    Google Scholar 

  60. Rechtsman, M.C., Stillinger, F.H., Torquato, S.: Optimized interactions for targeted self-assembly: application to a honeycomb lattice. Phys. Rev. Lett. 95, 228301 (2005)

    Google Scholar 

  61. Rutkai, G., Thol, M., Span, R., Vrabec, J.: How well does the Lennard–Jones potential represent the thermodynamic properties of noble gases? Mol. Phys. 115(9–12), 1104–1121 (2017)

    Google Scholar 

  62. Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313(3), 635–743 (2012)

    Google Scholar 

  63. Sandier, E., Serfaty, S.: 1d log gases and the renormalized energy: crystallization at vanishing temperature. Prob. Theory Relat. Fields 162(3–4), 795–846 (2015)

    Google Scholar 

  64. Sarnak, P., Strömbergsson, A.: Minima of Epstein’s Zeta function and heights of flat tori. Invent. Math. 165, 115–151 (2006)

    Google Scholar 

  65. Stillinger, F.H.: Lattice sums and their phase diagram implications for the classical Lennard–Jones model. J. Chem. Phys. 115(11), 5208–5212 (2001)

    Google Scholar 

  66. Süto, A.: Crystalline ground states for classical particles. Phys. Rev. Lett. 95(26), 265501 (2005)

    Google Scholar 

  67. Süto, A.: Ground state at high density. Commun. Math. Phys. 305, 657–710 (2011)

    Google Scholar 

  68. Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)

    Google Scholar 

  69. Torquato, S.: Inverse optimization techniques for targeted self-assembly. Soft Matter 5, 1157 (2009)

    Google Scholar 

  70. Venkov, B.: Réseaux et designs sphériques. Réseaux euclidiens, designs sphériques et formes modulaires 37, 10–86 (2001)

    Google Scholar 

  71. Ventevogel, W.J.: On the configuration of systems of interacting particle with minimum potential energy per particle. Phys. A Stat. Mech. Appl. 92A(3–4), 343–361 (1978)

    Google Scholar 

  72. Ventevogel, W.J., Nijboer, B.R.A.: On the configuration of systems of interacting particle with minimum potential energy per particle. Phys. A Stat. Mech. Appl. 98(1–2), 274–288 (1979)

    Google Scholar 

  73. Ventevogel, W.J., Nijboer, B.R.A.: On the configuration of systems of interacting particles with minimum potential energy per particle. Phys. A Stat. Mech. Appl. 99(3), 569–580 (1979)

    Google Scholar 

  74. Viazovska, M.: The sphere packing problem in dimension 8. Ann. Math. 185(3), 991–1015 (2017)

    Google Scholar 

  75. Weinan, E., Li, D.: On the crystallization of 2D hexagonal lattices. Commun. Math. Phys. 286, 1099–1140 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referee for helping clarify the paper. LB is grateful for the support of the Mathematics Center Heidelberg (MATCH) during his stay in Heidelberg. He also acknowledges support from ERC advanced grant Mathematics of the Structure of Matter (Project No. 321029) and from VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059). MP is grateful for the stimulating work environment provided by ICERM (Brown University), during the Semester Program on “Point Configurations in Geometry, Physics and Computer Science” in spring 2018 supported by the National Science Foundation under Grant No. DMS-1439786, and acknowledges support from the FONDECYT Iniciacion en Investigacion 2017 Grant No. 11170264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Petrache.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Proposition 6.3

Appendix A: Proof of Proposition 6.3

Proof of Proposition 6.3

In the following, we will write \(c=\left( \frac{2}{3} \right) \left( \frac{4}{9} \right) ^{p}\) and \(I_\lambda =\left[ \frac{4}{9\lambda },\frac{1}{\lambda } \right] \). Let \(L\in \mathscr {L}_d\) be a Bravais lattice, then we have, for any \(\lambda >0\),

$$\begin{aligned} E_f[\lambda L]=\frac{c}{\lambda ^{p}}\sum _{\begin{array}{c} x\in L \\ |x|<\frac{4}{9\lambda } \end{array}}\frac{1}{|x|^{p}}+\sum _{\begin{array}{c} x\in L \\ |x|\in I_\lambda \end{array}}(2-3\lambda |x|)-\frac{1}{\lambda ^4}\sum _{\begin{array}{c} x\in L\\ |x|>\frac{1}{\lambda } \end{array}} \frac{1}{|x|^4}:=S_1+S_2+S_3. \end{aligned}$$
(A.1)

Step 1. We remark that, for any L with minimal distance 1 (like \(\mathbb {Z}^2\) and \(\mathsf {A}_2\)), therefore if \(\lambda >1\), then \(S_1=S_2=0\) and we get \(E_f[\lambda L]=S_3=-\lambda ^{-4} \zeta _{L}(4)\). Since \(\lambda \mapsto \lambda ^{-4}\) is decreasing, it follows that \(E_f[\lambda L]\) is increasing in \(\lambda \) for \(\lambda \in (1,+\infty )\).

Step 2. We now treat the case \(L=\mathbb {Z}^2\), for \(\lambda \in [4/9,1]\), a range in which \(S_1=0\) but \(S_2,S_3\ne 0\). Note that the distances to the origin for the square lattice are 1 (achieved 4 times), \(\sqrt{2}\) (achieved 4 times), 2 (achieved 4 times) and \(\sqrt{5}\) (achieved 8 times). We base our case subdivision on these values.

  1. (1)

    Values\(4/9\le \lambda \le 1/\sqrt{5}\)for\(L=\mathbb {Z}^2\). Then

    $$\begin{aligned} E_f[\lambda \mathbb {Z}^2]=40-3(12+4\sqrt{2}+8\sqrt{5})\lambda -\frac{(\zeta _{\mathbb {Z}^2}(4)-5-1/4-8/25)}{\lambda ^4}. \end{aligned}$$
    (A.2)

    Therefore, \(\frac{d}{d\lambda }E_f[\lambda \mathbb {Z}^2]\ge 0\) if and only if \(\lambda \le \left( \frac{4(\zeta _{\mathbb {Z}^2}(4)-5-1/4-8/25)}{3(12+4\sqrt{2}+8\sqrt{5})} \right) ^{1/5}=:\lambda _1\approx 0.4433\). Thus, \(\lambda \mapsto E_f[\lambda \mathbb {Z}^2]\) is decreasing on \([4/9,1/\sqrt{5}]\).

  2. (2)

    Values\(1/\sqrt{5}< \lambda \le 1/2\)for\(L=\mathbb {Z}^2\). In this case

    $$\begin{aligned} E_f[\lambda \mathbb {Z}^2]=24-3(12+4\sqrt{2})\lambda -\frac{(\zeta _{\mathbb {Z}^2}(4)-5-1/4)}{\lambda ^4}. \end{aligned}$$
    (A.3)

    The \(\tfrac{d}{d\lambda }\)-derivative of (A.3) is positive for \( \lambda <\left( \frac{4(\zeta _{\mathbb {Z}^2}(4)-5-1/4)}{3(12+4\sqrt{2})} \right) ^{1/5}\approx 0.56\) and thus \(\lambda \mapsto E_f[\lambda \mathbb {Z}^2]\) is increasing for \(\lambda \in (1/\sqrt{5},1/2]\).

  3. (3)

    Values\(1/2<\lambda \le 1/\sqrt{2}\)for\(L=\mathbb {Z}^2\). In this case

    $$\begin{aligned} E_f[\lambda \mathbb {Z}^2]=16-3(4+4\sqrt{2})\lambda -\frac{(\zeta _{\mathbb {Z}^2}(4)-5)}{\lambda ^4}. \end{aligned}$$
    (A.4)

    Now for the critical value \(\left( \frac{4(\zeta _{\mathbb {Z}^2}(4)-5)}{3(4+4\sqrt{2})} \right) ^{1/5}=:\lambda _2\approx 0.6765\) we find that \(\lambda \mapsto E_f[\lambda \mathbb {Z}^2]\) is increasing on \((1/2,\lambda _2]\) and decreasing on \([\lambda _2,1/\sqrt{2}]\).

  4. (4)

    Values\(1/\sqrt{2}<\lambda \le 1\)for\(L=\mathbb {Z}^2\). In this case

    $$\begin{aligned} E_f[\lambda \mathbb {Z}^2]=8-12\lambda -\frac{(\zeta _{\mathbb {Z}^2}(4)-4)}{\lambda ^4}. \end{aligned}$$
    (A.5)

    Therefore, defining \(\left( \frac{4(\zeta _{\mathbb {Z}^2}(4)-4)}{12} \right) ^{1/5}=:\lambda _3\approx 0.9245\) the map \(\lambda \mapsto E_f[\lambda \mathbb {Z}^2]\) is increasing on \([1/\sqrt{2},\lambda _3]\) and decreasing on \([\lambda _3,1]\).

Now, comparing the values of \(E_f[\lambda L]\) for \(L=\mathbb {Z}^2\) for \(\lambda \in \{1/\sqrt{5},1/\sqrt{2},1\}\), we find that, based on the above discussion and on Step 1,

$$\begin{aligned} \displaystyle \min _{\lambda \ge 4/9}E_f[\lambda \mathbb {Z}^2]=E_f\left[ \frac{1}{\sqrt{5}}\mathbb {Z}^2 \right] \approx -19.108745 \end{aligned}$$
(A.6)

Step 3. By performing a similar discussion as in Steps 1 and 2, based on the distances to the origin for points in \(L=\mathsf {A}_2\) lower than 9 / 4, that are \(1,\sqrt{3}\) and 2 (all achieved 6 times), we obtain

$$\begin{aligned} \displaystyle \min _{\lambda \ge 4/9}E_f[\lambda \mathsf {A}_2]=E_f\left[ \frac{4}{9}\mathsf {A}_2 \right] \approx -19.013358. \end{aligned}$$
(A.7)

Step 4. We now assume that \(\lambda <\frac{4}{9}\) and we compute a lower bound for the energy (A.1). We bound \(S_1\) by the first term in the sum and \(S_3\) by the sum over the whole lattice without the constraint \(|x|>\tfrac{1}{\lambda }\), and we obtain

$$\begin{aligned} S_1> \frac{4\left( \frac{2}{3} \right) \left( \frac{4}{9} \right) ^p}{\lambda ^p},\quad S_3>-\frac{\zeta _{\mathbb {Z}^2}(4)}{\lambda ^4}. \end{aligned}$$
(A.8)

For \(S_2\), we use the fact that \(\#\{ x\in \mathbb {Z}^2; |x|\le r \}=\pi r^2 + R(r)\) where \(|R(r)|\le 2\sqrt{2}\pi r\). We therefore get

$$\begin{aligned} S_2=\sum _{\begin{array}{c} x\in \mathbb {Z}^2 \\ |x|\in I_\lambda \end{array}}(2-3\lambda |x|)&> \left( 2-\frac{4}{3\lambda }\right) \#\{x\in \mathbb {Z}^2; |x|\in I_\lambda \} \end{aligned}$$
(A.9)
$$\begin{aligned}&> \left( 2-\frac{4}{3\lambda }\right) \left( \frac{\pi }{\lambda ^2} -\frac{16\pi }{81\lambda ^2}+\frac{2\sqrt{2}\pi }{\lambda } +\frac{8\sqrt{2}\pi }{9\lambda } \right) \end{aligned}$$
(A.10)
$$\begin{aligned}&=-\frac{260\pi }{243\lambda ^3}-\left( \frac{104\sqrt{2}\pi }{27\lambda ^2} -\frac{130\pi }{81\lambda ^2} \right) +\frac{52\sqrt{2}\pi }{9\lambda }. \end{aligned}$$
(A.11)

Thus, we have obtained

$$\begin{aligned} E_f[\lambda \mathbb {Z}^2]>\frac{4\left( \frac{2}{3} \right) \left( \frac{4}{9} \right) ^p}{\lambda ^p}-\frac{\zeta _{\mathbb {Z}^2}(4)}{\lambda ^4}-\frac{260\pi }{243\lambda ^3} -\left( \frac{104\sqrt{2}\pi }{27\lambda ^2}-\frac{130\pi }{81\lambda ^2} \right) +\frac{52\sqrt{2}\pi }{9\lambda } .\nonumber \\ \end{aligned}$$
(A.12)

We now want to determine a value \(\lambda <4/9\) such that \(E_f[\lambda \mathbb {Z}^2]>E[\frac{1}{\sqrt{5}}\mathbb {Z}^2]\). A sufficient condition is, setting \(X=\lambda ^{-1}\), to know all the \(X>\frac{9}{4}\) satisfy

$$\begin{aligned}&4\left( \frac{2}{3} \right) \left( \frac{4}{9} \right) ^p X^p+\frac{52\sqrt{2}\pi }{9}X \nonumber \\&\quad \ge \zeta _{\mathbb {Z}^2}(4) X^4 +\frac{260\pi }{243}X^3 +\left( \frac{104\sqrt{2}\pi }{27}+\frac{130\pi }{81} \right) X^2 +E\left[ \frac{1}{\sqrt{5}}\mathbb {Z}^2\right] .\nonumber \\ \end{aligned}$$
(A.13)

Defining the following coefficient

$$\begin{aligned} \alpha _4:=\zeta _{\mathbb {Z}^2}(4),\quad \alpha _3:=\frac{260\pi }{243}, \quad \alpha _2:=\left( \frac{104\sqrt{2}\pi }{27}-\frac{130\pi }{81} \right) , \end{aligned}$$

it follows by a direct estimate that (A.13) holds if

$$\begin{aligned} X\ge U_p:=\max \left\{ \left( \frac{9}{8}\left( \frac{9}{4} \right) ^p \alpha _4 \right) ^{\frac{1}{p-4}}, \left( \frac{9}{8}\left( \frac{9}{4} \right) ^p \alpha _3 \right) ^{\frac{1}{p-3}}, \left( \frac{9}{8} \left( \frac{9}{4} \right) ^p \alpha _2 \right) ^{\frac{1}{p-2}}\right\} . \end{aligned}$$

We observe that \(U_p\rightarrow \frac{9}{4}\) as \(p\rightarrow +\infty \) and is \(U_p\) decreasing in p for large p. Therefore, by continuity of \(\lambda \mapsto E_f[\lambda \mathbb {Z}^2]\), for any \(\varepsilon >0\), there exists \(p_0\) such that

$$\begin{aligned} \left| \min _{\lambda<4/9} E_f[\lambda \mathbb {Z}^2] -E_f\left[ \frac{4}{9}\mathbb {Z}^2\right] \right| <\varepsilon . \end{aligned}$$

Since \( E_f[\frac{4}{9}\mathbb {Z}^2]>E_f[\frac{1}{\sqrt{5}}\mathbb {Z}^2]\), it follows that, for enough large p,

$$\begin{aligned} \min _{\lambda >0}E_f[\lambda \mathbb {Z}^2]=E_f\left[ \frac{1}{\sqrt{5}}\mathbb {Z}^2\right] \approx -19.108745. \end{aligned}$$

The same argument can be repeated for \(L=\mathsf {A}_2\), obtaining that for any \(\varepsilon >0\), there exists \(p_0\) such that for any \(p>p_0\) there holds

$$\begin{aligned} \left| \min _{\lambda<4/9} E_f[\lambda \mathsf {A}_2] -E_f\left[ \frac{4}{9}\mathsf {A}_2\right] \right| <\varepsilon . \end{aligned}$$

Therefore, by (A.7), \(\min _{\lambda>0} E_f[\lambda \mathsf {A}_2]> E_f[\frac{4}{9} \mathsf {A}_2]-\varepsilon >E_f[\frac{1}{\sqrt{5}}\mathbb {Z}^2]\) for \(\varepsilon >0\) sufficiently small, which in turn is achievable for \(p_0\) sufficiently large. These choices allow to complete the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bétermin, L., Petrache, M. Optimal and non-optimal lattices for non-completely monotone interaction potentials. Anal.Math.Phys. 9, 2033–2073 (2019). https://doi.org/10.1007/s13324-019-00299-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-019-00299-6

Keywords

Mathematics Subject Classification

Navigation