Skip to main content
Log in

A New Parametric Kernel Estimation Technique for License Plate Image De-blurring

  • 3DR Express
  • Published:
3D Research

Abstract

A recognizable license plate in a picture taken by a traffic monitoring system is crucial for identifying the vehicles involved in traffic violations. In the image of a vehicle taken by a surveillance camera, the license plate is often blurred due to fast motion and cannot be recognized by the human eye. In this type of blurring, the blur kernel can be seen to be a linear uniform convolution parametrically described by its angle and length. In this paper, we introduce a new estimation technique to determine this kernel accurately in order to improve our de-blurred result. We use the Hough transform in estimating the direction in which the image is blurred. To determine the extent of the blur in that direction, we employ a new method involving the cepstrum of the blurred image. We compare the performance of our method to that of other recent blind de-blurring techniques. These comparisons show that our proposed scheme can handle significant blur in the captured image to give a good output image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhou, W., Li, H., Lu, Y., & Tian, Q. (2012). Principle visual word discovery for automatic license plate detection. IEEE Transactions on Image Processing, 21(9), 4269–4279.

    Article  MathSciNet  Google Scholar 

  2. Zhou, W., Lu, Y., Li, H., Song, Y., & Tian, Q. (2016). Spatial coding for large scale partial-duplicate Web image search. In Proceedings of the 18th ACM International Conference on Multimedia (pp. 511–520).

  3. Zhou, W., Li, H., Hong, R., Lu, Y., & Tian, Q. (2015). BSIFT: Toward data-independent codebook for large scale image search. IEEE Transactions on Image Processing, 24(3), 967–979.

    Article  MathSciNet  Google Scholar 

  4. Zhou, W., Yang, M., Li, H., Wang, X., Lin, Y., & Tian, Q. (2014). Towards codebook-free: Scalable cascaded hashing for mobile image search. IEEE Transactions on Multimedia, 16(3), 601–611.

    Article  Google Scholar 

  5. Cho, S., & Lee, S. (2009). Fast motion de-blurring. ACM Transactions on Graphics, 28(5), 145.

    Article  Google Scholar 

  6. Shan, Q., Jia, J., & Agarwala, A. (2008). High-quality motion de-blurring from a single image. ACM Transactions on Graphics, 27(3), 73.

    Article  Google Scholar 

  7. Xu, L., Zheng, S. & Jia, J. (2013). Unnatural sparse representation for natural image de-blurring. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1107–1114).

  8. Cho, H., Wang, J., & Lee, S. (2012). Text image de-blurring using text-specific properties. In Proceedings of the European conference on computer vision (pp. 524–537).

  9. Xu, L., & Jia, J. (2010). Two-phase kernel estimation for robust motion de-blurring. In Proceedings of the European conference on computer vision (pp. 157–170).

  10. Levin, A., Weiss, Y., Durand, F., & Freeman, W. T. (2011). Understanding blind deconvolution algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2354–2367.

    Article  Google Scholar 

  11. Oliveira, J. P., Figueiredo, M. A. T., & Bioucas-Dias, J. M. (2014). Parametric blur estimation for blind restoration of natural images: Linear motion and out-of-focus. IEEE Transactions on Image Processing, 23(1), 466–477.

    Article  MathSciNet  Google Scholar 

  12. Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., & Freeman, W. T. (2006). Removing camera shake from a single photograph. ACM Transactions on Graphics, 25(3), 787–794.

    Article  Google Scholar 

  13. Lu, Q., Zhou, W., Fang, L., & Li, H. (2016). Robust blur kernel estimation for license plate images from fast moving vehicles. IEEE Transactions on Image Processing, 25(5), 2311–2323.

    Article  MathSciNet  Google Scholar 

  14. Whyte, O., Sivic, J., Zisserman, A., & Ponce, J. (2012). Non-uniform deblurring for shaken images. International Journal of Computer Vision, 98(2), 168–186.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gupta, A., Joshi, N., Zitnick, C. L., Cohen, M., & Curless, B. (2010) Single image deblurring using motion density functions. In Proceedings of the 11th European conference on computer vision (pp. 171–184).

  16. Zheng, S., Xu, L., & Jia, J. (2013). Forward motion deblurring. In Proceedings of the IEEE international conference on computer vision (pp. 1465–1472).

  17. Tiwari, S., Shukla, V. P., Singh, A. K., & Biradar, S. R. (2013). Review of motion blur estimation techniques. Journal of Image and Graphics, 1(4), 176–184.

    Google Scholar 

  18. Gonzalez, R. C., & Woods, R. E. (2007). Digital Image Processing. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  19. Hartley, R., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  20. Krishnan, D., Tay, T., & Fergus, R. (2011). Blind deconvolution using a normalized sparsity measure. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 233–240).

  21. Cai, J. F., Ji, H., Liu, C., & Shen, Z. (2012). Framelet based blind motion deblurring from a single image. IEEE Transactions on Image Processing, 21(2), 562–572.

    Article  MathSciNet  Google Scholar 

  22. Chang, C. C., & Lin, C. J. (2016). A library for support vector machines. Available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm.

  23. Oliveira, J. P., Figueiredo, M. A. T., & Bioucas-Dias, J. M. (2007). Blind estimation of motion blur parameters for image deconvolution. In Proceedings of the 3rd Iberian conference on pattern recognition and image analysis (pp. 604–611).

  24. Zeng, N., Zhang, H., Li, Y., Liang, J., & Dobaie, A. M. (2017). Denoising and deblurring gold immunochromatographic strip images via gradient projection algorithms. Journal of Neurocomputing, 247, 165–172.

    Article  Google Scholar 

  25. Zeng, N., Wang, Z., Zhang, H., Liu, W., & Alsaadi, F. E. (2016). Deep belief networks for quantitative analysis of a gold immunochromatographic strip. Journal of Cognitive Computation, 8(4), 684–692.

    Article  Google Scholar 

  26. Zeng, N., Wang, Z., Zineddin, B., Li, Y., Du, M., Xiao, L., et al. (2014). Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach. IEEE Transactions on Medical Imaging, 33(5), 1129–1136.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Muthu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P.S.P., Muthu, R.K. A New Parametric Kernel Estimation Technique for License Plate Image De-blurring. 3D Res 8, 22 (2017). https://doi.org/10.1007/s13319-017-0133-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-017-0133-z

Keywords

Navigation