Skip to main content
Log in

Hepatic Transporters Alternations Associated with Non-alcoholic Fatty Liver Disease (NAFLD): A Systematic Review

  • Systematic Review
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disorder and is usually accompanied by obesity, metabolic syndrome, and diabetes mellitus. NAFLD progression can lead to impaired functions of hepatocytes such as alternations in expression and function of hepatic transporters. The present study aimed to summarize and discuss the results of clinical and preclinical human studies that investigate the effect of NAFLD on hepatic transporters.

Methods

The databases of PubMed, Scopus, Embase, and Web of Science were searched systematically up to 1 March 2022. The risk of bias was assessed for cross-sectional studies through the Newcastle–Ottawa Scale score.

Results

Our review included ten cross-sectional studies consisting of 485 participants. Substantial alternations in hepatic transporters were seen during NAFLD progression to non-alcoholic steatohepatitis (NASH) in comparison with control groups. A significant reduction in expression and function of several hepatic uptake transporters, upregulation of many efflux transporters, downregulation of cholesterol efflux transporters, and mislocalization of canalicular transporter ABCC2 are associated with NAFLD progression.

Conclusion

Since extensive changes in hepatic transporters could alter the pharmacokinetics of the drugs and potentially affect the safety and efficacy of drugs, close monitoring of drug administration is highly suggested in patients with NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017;37:81–4.

    Article  Google Scholar 

  2. Haque M, Sanyal AJ. The metabolic abnormalities associated with non-alcoholic fatty liver disease. Best Pract Res Cl Ga. 2002;16(5):709–31.

    Article  CAS  Google Scholar 

  3. Charlton MR, et al. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141(4):1249–53.

    Article  Google Scholar 

  4. Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.

    Article  Google Scholar 

  5. Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of hepatic transporters in clinical disposition of drugs and their metabolites. J Clin Pharmacol. 2016;56(Suppl 7):S23-39.

    Article  CAS  Google Scholar 

  6. Thakkar N, Slizgi JR, Brouwer KLR. Effect of liver disease on hepatic transporter expression and function. J Pharma Sci. 2017;106(9):2282–94.

    Article  CAS  Google Scholar 

  7. Jou J, Choi SS, Diehl AM. Mechanisms of disease progression in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28(4):370–9.

    Article  CAS  Google Scholar 

  8. Greco D, et al. Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol. 2008;294(5):G1281-1287.

    Article  CAS  Google Scholar 

  9. Fabbrini E, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci USA. 2009;106(36):15430–5.

    Article  CAS  Google Scholar 

  10. Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev. 2008;60(3):311–57.

    Article  CAS  Google Scholar 

  11. Bell M, et al. Consequences of lipid droplet coat protein downregulation in liver cells: abnormal lipid droplet metabolism and induction of insulin resistance. Diabetes. 2008;57(8):2037–45.

    Article  CAS  Google Scholar 

  12. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114(2):147–52.

    Article  CAS  Google Scholar 

  13. Sanyal AJ, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120(5):1183–92.

    Article  CAS  Google Scholar 

  14. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145–71.

    Article  CAS  Google Scholar 

  15. Canet MJ, et al. Modeling human nonalcoholic steatohepatitis-associated changes in drug transporter expression using experimental rodent models. Drug Metab Dispos. 2014;42(4):586–95.

    Article  Google Scholar 

  16. Dzierlenga AL, et al. Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis. J Pharmacol Exp Ther. 2015;352(3):462–70.

    Article  Google Scholar 

  17. Hardwick RN, et al. Molecular mechanism of altered ezetimibe disposition in nonalcoholic steatohepatitis. Drug Metab Dispos. 2012;40(3):450–60.

    Article  CAS  Google Scholar 

  18. Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

    Article  Google Scholar 

  19. Caballero F, et al. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol. 2009;50(4):789–96.

    Article  CAS  Google Scholar 

  20. Hardwick RN, et al. Variations in ATP-binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2011;39(12):2395–402.

    Article  CAS  Google Scholar 

  21. Canet MJ, et al. Altered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis. Drug Metab Dispos. 2015;43(6):829–35.

    Article  CAS  Google Scholar 

  22. Vega-Badillo J, et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 2016;36(9):1383–91.

    Article  CAS  Google Scholar 

  23. Ferslew BC, et al. Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis. Clin Pharmacol Ther. 2015;97(4):419–27.

    Article  CAS  Google Scholar 

  24. Clarke JD, et al. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int. 2017;37(7):1074–81.

    Article  CAS  Google Scholar 

  25. Ali I, et al. Transporter-mediated alterations in patients with NASH increase systemic and hepatic exposure to an OATP and MRP2 substrate. Clin Pharmacol Ther. 2018;104(4):749–56.

    Article  CAS  Google Scholar 

  26. Dzierlenga AL, Cherrington NJ. Misregulation of membrane trafficking processes in human nonalcoholic steatohepatitis. J Biochem Mol Toxicol. 2018;32:3.

    Article  Google Scholar 

  27. Vildhede A, et al. Quantitative proteomics and mechanistic modeling of transporter-mediated disposition in nonalcoholic fatty liver disease. Clin Pharmacol Ther. 2020;107(5):1128–37.

    Article  CAS  Google Scholar 

  28. Chatterjee S, et al. Transporter activity changes in nonalcoholic steatohepatitis: assessment with plasma coproporphyrin I and III. J Pharmacol Exp Ther. 2021;376(1):29–39.

    Article  CAS  Google Scholar 

  29. Svoboda M, et al. Organic anion transporting polypeptides (OATPs): regulation of expression and function. Curr Drug Metab. 2011;12(2):139–53.

    Article  CAS  Google Scholar 

  30. Giacomini KM, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

    Article  CAS  Google Scholar 

  31. Williams JA, et al. Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.

    Article  CAS  Google Scholar 

  32. Ballantyne CM, et al. Risk for myopathy with statin therapy in high-risk patients. Arch Intern Med. 2003;163(5):553–64.

    Article  CAS  Google Scholar 

  33. Omar MA, Wilson JP. FDA adverse event reports on statin-associated rhabdomyolysis. Ann Pharmacother. 2002;36(2):288–95.

    Article  CAS  Google Scholar 

  34. Ishiguro N, et al. Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Drug Metab Dispos. 2006;34(7):1109–15.

    Article  CAS  Google Scholar 

  35. Poirier A, et al. Prediction of pharmacokinetic profile of valsartan in human based on in vitro uptake transport data. J Pharmacokinet Phar. 2009;36(6):585–611.

    Article  CAS  Google Scholar 

  36. Prasad B, et al. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metab Dispos. 2014;42(1):78–88.

    Article  CAS  Google Scholar 

  37. Wang L, et al. Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metab Dispos. 2015;43(3):367–74.

    Article  Google Scholar 

  38. Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–87.

    Article  CAS  Google Scholar 

  39. Nies AT, et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology. 2009;50(4):1227–40.

    Article  CAS  Google Scholar 

  40. Zhang L, et al. Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol. 1997;51(6):913–21.

    Article  CAS  Google Scholar 

  41. Ahlin G, et al. Genotype-dependent effects of inhibitors of the organic cation transporter, OCT1: predictions of metformin interactions. Pharmacogenomics J. 2011;11(6):400–11.

    Article  CAS  Google Scholar 

  42. Cho SK, et al. Verapamil decreases the glucose-lowering effect of metformin in healthy volunteers. Br J Clin Pharmacol. 2014;78(6):1426–32.

    Article  CAS  Google Scholar 

  43. Cho SK, et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther. 2011;89(3):416–21.

    Article  CAS  Google Scholar 

  44. Anwer MS, Stieger B. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch. 2014;466(1):77–89.

    Article  CAS  Google Scholar 

  45. Bi YA, et al. Quantitative assessment of the contribution of sodium-dependent taurocholate co-transporting polypeptide (NTCP) to the hepatic uptake of rosuvastatin, pitavastatin and fluvastatin. Biopharm Drug Dispos. 2013;34(8):452–61.

    Article  CAS  Google Scholar 

  46. Gozalpour E, et al. Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, and OATP1B3. Mol Pharm. 2014;11(6):1844–55.

    Article  CAS  Google Scholar 

  47. Lepist EI, et al. Evaluation of the endothelin receptor antagonists ambrisentan, bosentan, macitentan, and sitaxsentan as hepatobiliary transporter inhibitors and substrates in sandwich-cultured human hepatocytes. PLoS ONE. 2014;9(1): e87548.

    Article  Google Scholar 

  48. McRae MP, et al. Ritonavir, saquinavir, and efavirenz, but not nevirapine, inhibit bile acid transport in human and rat hepatocytes. J Pharmacol Exp Ther. 2006;318(3):1068–75.

    Article  CAS  Google Scholar 

  49. Stieger B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol. 2011;201:205–59.

    Article  CAS  Google Scholar 

  50. König J, et al. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology. 1999;29(4):1156–63.

    Article  Google Scholar 

  51. Kool M, et al. Expression of human MRP6, a homologue of the multidrug resistance protein gene MRP1, in tissues and cancer cells. Cancer Res. 1999;59(1):175–82.

    CAS  Google Scholar 

  52. Ferslew BC, et al. Role of multidrug resistance-associated protein 4 in the basolateral efflux of hepatically derived enalaprilat. Drug Metab Dispos. 2014;42(9):1567–74.

    Article  Google Scholar 

  53. Pfeifer ND, Yang K, Brouwer KL. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition I: characterization of basolateral versus biliary clearance using a novel protocol in sandwich-cultured hepatocytes. J Pharmacol Exp Ther. 2013;347(3):727–36.

    Article  CAS  Google Scholar 

  54. Zamek-Gliszczynski MJ, et al. Integration of hepatic drug transporters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci. 2006;27(5):447–86.

    Article  CAS  Google Scholar 

  55. Varma MV, et al. Physicochemical determinants of human renal clearance. J Med Chem. 2009;52(15):4844–52.

    Article  CAS  Google Scholar 

  56. Yokoo K, et al. Effect of S-1 on pharmacokinetics of irinotecan in a patient with colorectal cancer. Clin Pharmacol Ther. 2006;80(4):422–4.

    Article  CAS  Google Scholar 

  57. Gregoor PJ, et al. Effect of cyclosporine on mycophenolic acid trough levels in kidney transplant recipients. Transplantation. 1999;68(10):1603–6.

    Article  CAS  Google Scholar 

  58. Shipkova M, et al. Effect of cyclosporine withdrawal on mycophenolic acid pharmacokinetics in kidney transplant recipients with deteriorating renal function: preliminary report. Ther Drug Monit. 2001;23(6):717–21.

    Article  CAS  Google Scholar 

  59. Kuypers DR, et al. Mycophenolic acid exposure after administration of mycophenolate mofetil in the presence and absence of cyclosporin in renal transplant recipients. Clin Pharmacokinet. 2009;48(5):329–41.

    Article  CAS  Google Scholar 

  60. Fukuda T, et al. Nonsteroidal anti-inflammatory drugs may reduce enterohepatic recirculation of mycophenolic acid in patients with childhood-onset systemic lupus erythematosus. Ther Drug Monit. 2011;33(5):658–62.

    Article  CAS  Google Scholar 

  61. Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev. 2002;23(5):687–702.

    Article  CAS  Google Scholar 

  62. Teng S, Piquette-Miller M. The involvement of the pregnane X receptor in hepatic gene regulation during inflammation in mice. J Pharmacol Exp Ther. 2005;312(2):841–8.

    Article  CAS  Google Scholar 

  63. Huang L, et al. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem. 2003;278(51):51085–90.

    Article  CAS  Google Scholar 

  64. Kast HR, et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem. 2002;277(4):2908–15.

    Article  CAS  Google Scholar 

  65. Zollner G, et al. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm. 2006;3(3):231–51.

    Article  CAS  Google Scholar 

  66. Lefebvre P, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–91.

    Article  CAS  Google Scholar 

  67. Sinal CJ, et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102(6):731–44.

    Article  CAS  Google Scholar 

  68. Feng TTQ. Effect of NAFLD on regulation of hepatic transporters and metabolizing enzymes using a high fat/high cholesterol dietary model in rat. Toronto: University of Toronto; 2012.

    Google Scholar 

  69. Duran-Sandoval D, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 2004;53(4):890–8.

    Article  CAS  Google Scholar 

  70. Fang C, et al. Hepatic expression of multiple acute phase proteins and down-regulation of nuclear receptors after acute endotoxin exposure. Biochem Pharmacol. 2004;67(7):1389–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hooshang Mohammadpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Consent to publish

Not applicable.

Code availability

Not applicable.

Author Contribution

N.O.: conceptualization, methodology, writing—original draft preparation. S.Z.: writing, data collection. S.M., S.S.: validation and editing. A.H.M.: supervision and editing. F.A.: supervision and editing. All authors read and approved the final manuscript.

Funding

No funding was used to conduct this review.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 135 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidkhoda, N., zare, S., Mahdiani, S. et al. Hepatic Transporters Alternations Associated with Non-alcoholic Fatty Liver Disease (NAFLD): A Systematic Review. Eur J Drug Metab Pharmacokinet 48, 1–10 (2023). https://doi.org/10.1007/s13318-022-00802-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-022-00802-8

Navigation