Skip to main content
Log in

Fluctuations in Pharmacokinetics Profiles of Monoclonal Antibodies

  • Current Opinion
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Monoclonal antibodies (mAbs) are a group of drugs with predicted slow linear and target-mediated distribution and elimination. Visual inspection of published pharmacokinetic profiles of mAbs frequently reveals plateaus in the distribution phase or an increasing concentration many days after a single intravenous dose. A question which has been left unanswered until now is whether mAbs undergo recirculation mechanisms. If so, then which mechanisms are crucial for the fluctuation in their pharmacokinetics profiles? What is the impact of such mechanisms on mAb absorption, distribution and elimination? Current commentary accounts for the fluctuation of mAbs concentrations based on different mechanisms, as well in different phases of their in vivo disposition. Current knowledge shows significant impact of mAbs lymphatic recirculation on characteristics of their pharmacokinetics profiles. Fluctuating or plateau phases in pharmacokinetic profiles of mAbs are a consequence of multiple simultaneously occurring recirculatory as well as adsorption/desorption processes rather than only slow, continuous elimination. Lymphatic recirculation as well as other mechanisms appears to be an obvious element of the mAbs disposition. Periodic changes in the key factors affecting mAbs disposition can be responsible for the unpredictable concentration peaks in absorption, distribution and the elimination phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507.

    Article  CAS  PubMed  Google Scholar 

  2. Shi S. Biologics: an update and challenge of their pharmacokinetics. Curr Drug Metab. 2014;15(3):271–90.

    Article  CAS  PubMed  Google Scholar 

  3. Reijers JAA, Moerland M, Burggraaf J. Remarkable pharmacokinetics of monoclonal antibodies: a quest for an explanation. Clin Pharmacokinet. 2017;56(9):1081–9.

    Article  CAS  PubMed  Google Scholar 

  4. Deng R, Bumbaca D, Pastuskovas CV, Boswell CA, West D, Cowan KJ, et al. Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. mAbs. 2016;8(3):593–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deng R, Loyet KM, Lien S, Iyer S, DeForge LE, Theil FP, et al. Pharmacokinetics of humanized monoclonal anti-tumor necrosis factor-{alpha} antibody and its neonatal Fc receptor variants in mice and cynomolgus monkeys. Drug Metabol Dispos Biol Fate Chem. 2010;38(4):600–5.

    Article  CAS  Google Scholar 

  6. Gaudinski MR, Coates EE, Houser KV, Chen GL, Yamshchikov G, Saunders JG, et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: a phase 1 open-label clinical trial in healthy adults. PLoS Med. 2018;15(1):e1002493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han C, Gunn GR, Marini JC, Shankar G, Han Hsu H, Davis HM. Pharmacokinetics and immunogenicity investigation of a human anti-interleukin-17 monoclonal antibody in non-naive cynomolgus monkeys. Drug Metabol Dispos Biol Fate Chem. 2015;43(5):762–70.

    Article  CAS  Google Scholar 

  8. Liu L, Lu J, Allan BW, Tang Y, Tetreault J, Chow CK, et al. Generation and characterization of ixekizumab, a humanized monoclonal antibody that neutralizes interleukin-17A. J Inflamm Res. 2016;9:39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Richter M, Yumul R, Saydaminova K, Wang H, Gough M, Baldessari A, et al. Preclinical safety, pharmacokinetics, pharmacodynamics, and biodistribution studies with Ad35 K ++ protein: a novel rituximab cotherapeutic. Mol Ther Methods Clin Dev. 2016;5:16013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reijers JAA, Dane MJC, van Zonneveld AJ, Burggraaf J, Moerland M. Potential influence of endothelial adsorption on the delayed time to maximum concentration of biopharmaceuticals. Eur J Drug Metab Pharmacokinet. 2018;43(1):103–13.

    Article  CAS  PubMed  Google Scholar 

  11. Dickstein JB, Hay JB, Lue FA, Moldofsky H. The relationship of lymphocytes in blood and in lymph to sleep/wake states in sheep. Sleep. 2000;23(2):185–90.

    CAS  PubMed  Google Scholar 

  12. Richter WF, Jacobsen B. Subcutaneous absorption of biotherapeutics: knowns and unknowns. Drug Metabol Dispos Biol Fate Chem. 2014;42(11):1881–9.

    Article  CAS  Google Scholar 

  13. Quin JW, Shannon AD. The influence of the lymph node on the protein concentration of efferent lymph leaving the node. J Physiol. 1977;264(2):307–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beh KJ, Watson DL, Lascelles AK. Concentrations of immunoglobulins and albumin in lymph collected from various regions of the body of the sheep. Aust J Exp Biol Med Sci. 1974;52(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  15. Pellas TC, Weiss L. Deep splenic lymphatic vessels in the mouse: a route of splenic exit for recirculating lymphocytes. Am J Anat. 1990;187(4):347–54.

    Article  CAS  PubMed  Google Scholar 

  16. Cataldi M, Vigliotti C, Mosca T, Cammarota M, Capone D. Emerging role of the spleen in the pharmacokinetics of monoclonal antibodies, nanoparticles and exosomes. Int J Mol Sci. 2017;18(6):1249.

    Article  CAS  PubMed Central  Google Scholar 

  17. Chen N, Wang W, Fauty S, Fang Y, Hamuro L, Hussain A, et al. The effect of the neonatal Fc receptor on human IgG biodistribution in mice. mAbs. 2014;6(2):502–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2010;12(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  19. Aldrich MB, Velasquez FC, Kwon S, Azhdarinia A, Pinkston K, Harvey BR, et al. Lymphatic delivery of etanercept via nanotopography improves response to collagen-induced arthritis. Arthritis Res Ther. 2017;19(1):116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aldrich MB, Sevick-Muraca EM. Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine. 2013;64(1):362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tian Z, Sutton BJ, Zhang X. Distribution of rat neonatal Fc receptor in the principal organs of neonatal and pubertal rats. J Recept Signal Transduct Res. 2014;34(2):137–42.

    Article  CAS  PubMed  Google Scholar 

  22. van Iersel MT, Velinova MI. A change in posture significantly affects plasma concentrations of large molecules such as IgG antibodies. J Clin Pharmacol. 2018;58(10):1340–6.

    Article  CAS  PubMed  Google Scholar 

  23. Dahlberg AM, Kaminskas LM, Smith A, Nicolazzo JA, Porter CJ, Bulitta JB, et al. The lymphatic system plays a major role in the intravenous and subcutaneous pharmacokinetics of trastuzumab in rats. Mol Pharmaceut. 2014;11(2):496–504.

    Article  CAS  Google Scholar 

  24. Zou Y, Bateman TJ, Adreani C, Shen X, Cunningham PK, Wang B, et al. Lymphatic absorption, metabolism, and excretion of a therapeutic peptide in dogs and rats. Drug Metab Dispos Biol Fate Chem. 2013;41(12):2206–14.

    Article  CAS  PubMed  Google Scholar 

  25. Ingvar C, Norrgren K, Strand SE, Brodin T, Jonsson PE, Sjogren HO. Subcutaneous injection of monoclonal antibody 965 Biokinetics in the nude rat heterotransplanted with malignant melanoma. Acta Oncol (Stockholm, Sweden). 1990;29(8):1047–53.

    Article  CAS  Google Scholar 

  26. Varkhede N, Forrest ML. Understanding the monoclonal antibody disposition after subcutaneous administration using a minimal physiologically based pharmacokinetic model. J Pharm Pharmaceut Sci. 2018;21(1s):130s–48s.

    Article  Google Scholar 

  27. Silva-Sanchez A, Randall TD. Fugue G Minor: getting the lymph node ensemble together with circadian rhythm. Immunity. 2017;46(1):6–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kitamura K, Takahashi T, Kotani T, Miyagaki T, Yamaoka N, Tsurumi H, et al. Local administration of monoclonal antibody-drug conjugate: a new strategy to reduce the local recurrence of colorectal cancer. Cancer Res. 1992;52(22):6323–8.

    CAS  PubMed  Google Scholar 

  29. Cao Q, Zhao X, Bai J, Gery S, Sun H, Lin DC, et al. Circadian clock cryptochrome proteins regulate autoimmunity. Proc Natl Acad Sci U S A. 2017;114(47):12548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim J, Hayton WL, Robinson JM, Anderson CL. Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol Orlando, Fla. 2007;122(2):146–55.

    Article  CAS  Google Scholar 

  31. Gill KL, Machavaram KK, Rose RH, Chetty M. Potential Sources of Inter-Subject Variability in Monoclonal Antibody Pharmacokinetics. Clin Pharmacokinet. 2016;55(7):789–805.

    Article  CAS  PubMed  Google Scholar 

  32. Anderson CL, Ganesan LP, Robinson JM. The biology of the classical Fcgamma receptors in non-hematopoietic cells. Immunol Rev. 2015;268(1):236–40.

    Article  PubMed  Google Scholar 

  33. Couston RG, Skoda MW, Uddin S, van der Walle CF. Adsorption behavior of a human monoclonal antibody at hydrophilic and hydrophobic surfaces. mAbs. 2013;5(1):126–39.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. PflugersArch Eur J Physiol. 2007;454(3):345–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to express great appreciation to Neil Johnson Ph.D. for his professional guidance and valuable support in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Grabowski.

Ethics declarations

Funding

Tomasz Grabowski declare that his contribution in manuscript was related to financial support of The National Centre for Research and Development in Poland, Grant Number: POIR.01.02.00-00-0016/17.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabowski, T., Reijers, J.A.A., Burmańczuk, A. et al. Fluctuations in Pharmacokinetics Profiles of Monoclonal Antibodies. Eur J Drug Metab Pharmacokinet 44, 585–589 (2019). https://doi.org/10.1007/s13318-019-00548-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-019-00548-w

Navigation