Skip to main content
Log in

The preclinical pharmacokinetic disposition of a series of perforin-inhibitors as potential immunosuppressive agents

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

The cytolytic protein perforin is a key component of the immune response and is implicated in a number of human pathologies and therapy-induced conditions. A novel series of small molecule inhibitors of perforin function have been developed as potential immunosuppressive agents. The pharmacokinetics and metabolic stability of a series of 16 inhibitors of perforin was evaluated in male CD1 mice following intravenous administration. The compounds were well tolerated 6 h after dosing. After intravenous administration at 5 mg/kg, maximum plasma concentrations ranged from 532 ± 200 to 10,061 ± 12 ng/mL across the series. Plasma concentrations were greater than the concentrations required for in vitro inhibitory activity for 11 of the compounds. Following an initial rapid distribution phase, the elimination half-life values for the series ranged from 0.82 ± 0.25 to 4.38 ± 4.48 h. All compounds in the series were susceptible to oxidative biotransformation. Following incubations with microsomal preparations, a tenfold range in in vitro half-life was observed across the series. The data suggests that oxidative biotransformation was not singularly responsible for clearance of the compounds and no direct relationship between microsomal clearance and plasma clearance was observed. Structural modifications however, do provide some information as to the relative microsomal stability of the compounds, which may be useful for further drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat Rev 2:401–409

    Article  CAS  Google Scholar 

  • Fassberg J, Stella VJ (1992) A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J Pharm Sci 81(7):676–684

    Article  CAS  PubMed  Google Scholar 

  • Henkart PA (1985) Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol 3(1):31–58. doi:10.1146/annurev.iy.03.040185.000335

    Article  CAS  PubMed  Google Scholar 

  • Hirom PC, Millburn P, Smith RL, Williams RT (1972) Species variations in the threshold molecular-weight factor for the biliary excretion of organic anions. Biochem J 129(5):1071–1077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing K-F, Kollman PA, Benet LZ, Christians U (2000) Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 28(11):1369–1378

    CAS  PubMed  Google Scholar 

  • Kantola T, Kivisto KT, Neuvonen PJ (1998) Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 64:58–65

    Article  CAS  PubMed  Google Scholar 

  • Law RHP, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D’Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468(7322):447–451

    Article  CAS  PubMed  Google Scholar 

  • Lena G, Trapani JA, Sutton VR, Ciccone A, Browne KA, Smyth MJ, Denny WA, Spicer JA (2008) Dihydrofuro[3,4-c]pyridinones as inhibitors of the cytolytic effects of the pore-forming glycoprotein perforin. J Med Chem 51(23):7614–7624

    Article  CAS  PubMed  Google Scholar 

  • Lichtenheld MG, Olsen KJ, Lu P, Lowrey DM, Hameed A, Hengartner H, Podack ER (1988) Structure and function of human perforin. Nature 335(6189):448–451

    Article  CAS  PubMed  Google Scholar 

  • Lopez JA, Brennan AJ, Whisstock JC, Voskoboinik I, Trapani JA (2012) Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death. Trends Immunol 33(8):406–412

    Article  CAS  PubMed  Google Scholar 

  • Lyons DM, Huttunen KM, Browne KA, Ciccone A, Trapani JA, Denny WA, Spicer JA (2011) Inhibition of the cellular function of perforin by 1-amino-2,4-dicyanopyrido[1,2-a]benzimidazoles. Bioorg Med Chem 19(13):4091–4100

    Article  CAS  PubMed  Google Scholar 

  • Obach RS (1999) Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 27(11):1350–1359

    CAS  PubMed  Google Scholar 

  • O’Reilly T, McSheehy PMJ (2010) Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): processes, limitations, and further proposals. Transl Oncol 3(2):65–79. doi:http://dx.doi.org/10.1593/tlo.09277

  • Spicer JA, Huttunen KM, Miller CK, Denny WA, Ciccone A, Browne KA, Trapani JA (2012) Inhibition of the pore-forming protein perforin by a series of aryl-substituted isobenzofuran-1(3H)-ones. Bioorg Med Chem 20(3):1319–1336

    Article  CAS  PubMed  Google Scholar 

  • Spicer JA, Lena G, Lyons DM, Huttunen KM, Miller CK, O’Connor PD, Bull M, Helsby N, Jamieson SMF, Denny WA, Ciccone A, Browne KA, Lopez JA, Rudd-Schmidt J, Voskoboinik I, Trapani JA (2013) Exploration of a series of 5-arylidene-2-thioxoimidazolidin-4-ones as inhibitors of the cytolytic protein perforin. J Med Chem 56(23):9542–9555. doi:10.1021/jm401604x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Susanto O, Trapani JA, Brasacchio D (2012) Controversies in granzyme biology. Tissue Antigens 80(6):477–487. doi:10.1111/tan.12014

    Article  CAS  PubMed  Google Scholar 

  • Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev 2:735–747

    CAS  Google Scholar 

  • Veronese M, Mackenzie P, Doecke C, McManus M, Miners J, Birkett D (1991) Tolbutamide and phenytoin hydroxylations by cDNA-expressed human liver cytochrome P4502C9. Biochem Biophys Res Commun 175:1112–1118

    Article  CAS  PubMed  Google Scholar 

  • Veronese M, Doecke C, Mackenzie P, McManus M, Miners J, Rees D, Gasser R, Meyer U, Birkett D (1993) Site-directed mutation studies of human liver cytochrome P-450 isoenzymes in the CYP2C subfamily. Biochem J 289:533–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA (2010) Perforin: structure, function, and role in human immunopathology. Immunol Rev 235(1):35–54

    Article  CAS  PubMed  Google Scholar 

  • Wynalda MA, Hauer MJ, Wienkers LC (2000) Oxidation of the novel oxazolidinone antibiotic linezolid in human liver microsomes. Drug Metab Dispos 28(9):1014–1017

    CAS  PubMed  Google Scholar 

  • Yokogawa K, Takahashi M, Tamai I, Konishi H, Nomura M, Moritani S, Miyamoto K-i, Tsuji A (1999) P-glycoprotein-dependent disposition kinetics of tacrolimus: studies in mdr1a knockout mice. Pharm Res 16(8):1213–1218. doi:10.1023/a:1018993312773

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Wang L, Chandrasena G, Ma L, Zhu M, Zhang H, Davis CD, Humphreys WG (2007) Involvement of multiple cytochrome p450 and udp-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar. Drug Metab Dispos 35(1):139–149. doi:10.1124/dmd.106.011932

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wellcome Trust (Grant 092717) and the Auckland Division of the Cancer Society of New Zealand. MR Bull thanks the Maurice Wilkins Centre (Auckland, New Zealand) and the School of Medical Sciences PBRF publication bursary (The University of Auckland) for financial support. We also thank Sisira Kumara for the HPLC and solubility studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Bull.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

13318_2014_220_MOESM2_ESM.tif

Plasma concentration-time profiles following administration of 16 compounds at 5 mg/kg i.v. injection to male CD-1 mice. The mean ± standard deviation data from pooled samples from individual mice (n=3) at each time point are shown. Error bars may be smaller than the symbol. The two-compartment model fit of the data derived using Phoenix WinNonlin 6.2 (Pharsight Corporation, St. Louis, MO) are shown. The line indicates target IC50 values from in vitro activity assays (Spicer et al. 2012; Spicer et al. 2013) (TIFF 1098 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bull, M.R., Spicer, J.A., Huttunen, K.M. et al. The preclinical pharmacokinetic disposition of a series of perforin-inhibitors as potential immunosuppressive agents. Eur J Drug Metab Pharmacokinet 40, 417–425 (2015). https://doi.org/10.1007/s13318-014-0220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-014-0220-y

Keywords

Navigation