Skip to main content
Log in

Explicit Finite Element Formulations for the Free Vibrations and Buckling of Partial-Interaction Composite Beams with Two Sub-components

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

The variational principles and corresponding finite element formulations are developed in this work for the free vibration and buckling analysis of partial-interaction composite beams under complex engineering situations, such as axial loading conditions, non-uniform material distributions, multi-span boundaries. The composites structures consist of sub-components connected with shear connections of finite rigidities and thus suffer from the partial-interaction phenomenon, significantly affecting the structural performance. The macroscopic elements for dynamic and buckling behavior are explicitly derived by simultaneously considering the sub-elements’ deformations and interlayer slips, avoiding the stress concentrations in the contact areas existing in the commercial packages. The generated frequencies and critical loads of several orders for the single- or two-span composite structures with different boundary conditions are then validated against the analytical and numerical results in the literature with well-matched agreement. The interfacial shear connections and structural parameters are also studied of their influences on the structural dynamic and buckling behavior. The present theory is finally implemented in the theoretical analysis of the steel box-girder viaduct with non-uniformly-distributed shear braces and multi-span continuous composite beams of Jiubao Bridge. The explicit expressions of the elements are provided and can be readily implemented into the commercial software with high computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. If \(\omega^{2} { = }{m \mathord{\left/ {\vphantom {m n}} \right. \kern-0pt} n}\), then \(\delta \omega^{2} { = }\delta ({m \mathord{\left/ {\vphantom {m n}} \right. \kern-0pt} n}) = {{(\delta m \cdot n - m \cdot \delta n)} \mathord{\left/ {\vphantom {{(\delta m \cdot n - m \cdot \delta n)} {n^{2} }}} \right. \kern-0pt} {n^{2} }}\). Thus, \(\delta \omega^{2} { = 0}\) yields \(\delta m - \omega^{2} \cdot \delta n = 0\). The following buckling analysis can be conduted in a similar manner.

References

  • Adam, C., Heuer, R., & Jeschko, A. (1997). Flexural vibrations of elastic composite beams with interlayer slip. Acta Mechanica, 125, 17–30.

    Article  MATH  Google Scholar 

  • Auclair, S. C., Sorelli, L., Salenikovich, A., & Fafard, M. (2016). The effect of rotatory inertia on the natural frequencies of composite beams. Journal of Sound and Vibration, 366, 230–247.

    Article  Google Scholar 

  • Bao, G., & Xu, R. (2015). Dynamic stiffness matrix of partial-interaction composite beams. Advances in Mechanical Engineering, 7(3), 1–7.

    Article  Google Scholar 

  • Chapman, J. C., & Balakrishnan, S. (1964). Experiments on composite beams. The Structural Engineer, 42(11), 369–383.

    Google Scholar 

  • Girhammar, U. A., & Gopu, V. K. (1993). Composite beam-columns with interlayer slip-exact analysis. Journal of the Structural Engineering. American Society of Civil Engineers, 119(4), 1265–1282.

    Google Scholar 

  • Girhammar, U. A., & Pan, D. (1993). Dynamic analysis of composite members with interlayer slip. International Journal of Solids and Structures, 30(6), 797–823. https://doi.org/10.1016/0020-7683(93)90041-5

    Article  Google Scholar 

  • Girhammar, U. A., & Pan, D. H. (2007). Exact static analysis of partially composite beams and beam-columns. International Journal of Mechanical Sciences, 49(2), 239–255. https://doi.org/10.1016/j.ijmecsci.2006.07.005

    Article  Google Scholar 

  • He, G., Wang, D., & Yang, X. (2016). Analytical solutions for free vibration and buckling of composite beams using a higher order beam theory. Acta Mechanica Solida Sinica, 29(3), 300–315. https://doi.org/10.1016/S0894-9166(16)30163-X

    Article  Google Scholar 

  • He, G., & Yang, X. (2014). Finite element analysis for buckling of two-layer composite beams using Reddy’s higher order beam theory. Finite Elements in Analysis and Design, 83, 49–57. https://doi.org/10.1016/j.finel.2014.01.004

    Article  Google Scholar 

  • He, G., & Yang, X. (2015). Dynamic analysis of two-layer composite beams with partial interaction using a higher order beam theory. International Journal of Mechanical Sciences, 90, 102–112. https://doi.org/10.1016/j.ijmecsci.2014.10.020

    Article  Google Scholar 

  • Le Grognec, P., Nguyen, Q., & Hjiaj, M. (2012). Exact buckling solution for two-layer Timoshenko beams with interlayer slip. International Journal of Solids and Structures, 49(1), 143–150.

    Article  Google Scholar 

  • Lee, H. C. (1963). A generalized minimum principle and its application to the vibration of a wedge with rotatory inertia and shear. Journal of Applied Mechanics, 30(2), 176–180.

    Article  MATH  Google Scholar 

  • Lin, J., Wang, G., & Xu, R. (2019). Particle swarm optimization based finite element analyses and designs of shear connector distributions for the partial-interaction composite beams. Journal of Bridge Engineering, 24(4), 04019017.

    Article  Google Scholar 

  • Lin, J. P., Wang, G., Bao, G., & Xu, R. (2017). Stiffness matrix for the analysis and design of partial-interaction composite beams. Construction and Building Materials, 156, 761–772.

    Article  Google Scholar 

  • Nguyen, Q., Hjiaj, M., & Le Grognec, P. (2012). Analytical approach for free vibration analysis of two-layer Timoshenko beams with interlayer slip. Journal of Sound and Vibration, 331(12), 2949–2961.

    Article  Google Scholar 

  • Nie, J., Fan, J., & Cai, C. S. (2004). Stiffness and deflection of steel–concrete composite beams under negative bending. Journal of the Structural Engineering. American Society of Civil Engineers, 130(11), 1842–1851.

    Google Scholar 

  • Schnabl, S., & Planinc, I. (2010). The influence of boundary conditions and axial deformability on buckling behavior of two-layer composite columns with interlayer slip. Engineering Structures, 32(10), 3103–3111.

    Article  Google Scholar 

  • Schnabl, S., & Planinc, I. (2011). The effect of transverse shear deformation on the buckling of two-layer composite columns with interlayer slip. International Journal of Non-Linear Mechanics, 46(3), 543–553.

    Article  Google Scholar 

  • Shen, X., Chen, W., Wu, Y., & Xu, R. (2011). Dynamic analysis of partial-interaction composite beams. Composites Science and Technology, 71(10), 1286–1294. https://doi.org/10.1016/j.compscitech.2011.04.013

    Article  Google Scholar 

  • Song, T., Tao, Z., Han, L., & Uy, B. (2017). Bond behavior of concrete-filled steel tubes at elevated temperatures. Journal of the Structural Engineering. American Society of Civil Engineers, 143(11), 04017147.

    Google Scholar 

  • Wang, J., Wang, M., & Xiang, H. (2019). Performance evaluation and reinforcement measures for transverse separated blocks during steel box girder installation. J. Perform. Constr. Fac., 33(1), 04018090. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001245

    Article  Google Scholar 

  • Wang, J. F., Lin, J. P., & Xu, R. Q. (2015). Incremental launching construction control of long multispan composite bridges. Journal of Bridge Engineering, 20(11), 04015006.

    Article  Google Scholar 

  • Wu, Y., Xu, R., & Chen, W. (2007). Free vibrations of the partial-interaction composite members with axial force. Journal of Sound and Vibration, 299(4–5), 1074–1093. https://doi.org/10.1016/j.jsv.2006.08.008

    Article  Google Scholar 

  • Xu, R., & Wang, G. (2012). Variational principle of partial-interaction composite beams using Timoshenko’s beam theory. International Journal of Mechanical Sciences, 60(1), 72–83.

    Article  Google Scholar 

  • Xu, R., & Wu, Y. (2007). Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko’s beam theory. International Journal of Mechanical Sciences, 49(10), 1139–1155. https://doi.org/10.1016/j.ijmecsci.2007.02.006

    Article  Google Scholar 

  • Xu, R., & Wu, Y. (2008). Free vibration and buckling of composite beams with interlayer slip by two-dimensional theory. Journal of Sound and Vibration, 313, 875–890. https://doi.org/10.1016/j.jsv.2007.12.029

    Article  Google Scholar 

  • Sun, Q., Zhang, N., Liu, X., & Cheng, Z. (2023). Dynamic amplification factors of partial-interaction composite beams acted upon by the moving load. International Journal of Structural Stability and Dynamics., 23(01), 2350012. https://doi.org/10.1142/s0219455423500128

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the "Pioneer" and "Leading Goose" R&D Program of Zhejiang (No. 2022C01143); The first author gratefully acknowledges the support by the Natural Science Foundation of Xiamen, China (No. 3502Z20227200), the National Natural Science Foundation of China (No. 51608211), the Natural Science Foundation of Fujian Province (No. 2023J01106), the Fundamental Research Funds for the Central Universities (No. ZQN-711); The corresponding author is also supported by ZJU-ZCCC Institute of Collaborative Innovation (No.ZDJG2021002)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guannan Wang.

Ethics declarations

Competing interests

All authors disclosed no relevant relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The elements of the symmetric mass matrix \({\mathbf{M}}^{e}\) for the dynamic analysis of partial-interaction composite beams are

$$m_{11} = \frac{1}{210}l_{e} (70 - 7m + m^{2} )\rho A_{0} + \frac{{6m^{2} \rho I_{0} }}{{5l_{e} }},$$
$$m_{12} = \frac{1}{840}l_{e}^{2} (35 - 7m + 2m^{2} )\rho A_{0} + \frac{1}{10}m(5 + 6m)\rho I_{0} ,$$
$$m_{13} = \frac{1}{420}l_{e} ( - 7 + 2m)p\rho A_{0} + \frac{{6mp\rho I_{0} }}{{5l_{e} }},$$
$$m_{14} = - \frac{1}{210}l_{e} ( - 35 - 7m + m^{2} )\rho A_{0} - \frac{{6m^{2} \rho I_{0} }}{{5l_{e} }},$$
$$m_{15} = \frac{1}{840}l_{e}^{2} ( - 35 - 7m + 2m^{2} )\rho A_{0} + \frac{1}{10}m(5 + 6m)\rho I_{0} ,$$
$$m_{16} = \frac{1}{420}l_{e} ( - 7 + 2m)p\rho A_{0} + \frac{{6mp\rho I_{0} }}{{5l_{e} }},$$
$$m_{22} = \frac{1}{840}l_{e}^{3} (7 + m^{2} )\rho A_{0} + \frac{1}{30}l_{e} (10 + 15m + 9m^{2} )\rho I_{0} ,$$
$$m_{23} = \frac{1}{420}l_{e}^{2} mp\rho A_{0} + \frac{1}{10}(5 + 6m)p\rho I_{0} ,$$
$$m_{24} = \frac{1}{840}l_{e}^{2} (35 + 7m - 2m^{2} )\rho A_{0} - \frac{1}{10}m(5 + 6m)\rho I_{0} ,$$
$$m_{25} = \frac{1}{840}l_{e}^{3} ( - 7 + m^{2} )\rho A_{0} + \frac{1}{30}l_{e} (5 + 15m + 9m^{2} )\rho I_{0} ,$$
$$m_{26} = \frac{1}{420}l_{e}^{2} mp\rho A_{0} + \frac{1}{10}(5 + 6m)p\rho I_{0} ,$$
$$m_{33} = \frac{1}{210}l_{e} p^{2} \rho A_{0} + \frac{{6p^{2} \rho I_{0} }}{{5l_{e} }},$$
$$m_{34} = \frac{1}{420}l_{e} (7 - 2m)p\rho A_{0} - \frac{{6mp\rho I_{0} }}{{5l_{e} }},$$
$$m_{35} = \frac{1}{420}l_{e}^{2} mp\rho A_{0} + \frac{1}{10}(5 + 6m)p\rho I_{0} ,$$
$$m_{36} = \frac{1}{210}l_{e} p^{2} \rho A_{0} + \frac{{6p^{2} \rho I_{0} }}{{5l_{e} }},$$
$$m_{44} = \frac{1}{210}l_{e} (70 - 7m + m^{2} )\rho A_{0} + \frac{{6m^{2} \rho I_{0} }}{{5l_{e} }},$$
$$m_{45} = - \frac{1}{840}l_{e}^{2} (35 - 7m + 2m^{2} )\rho A_{0} - \frac{1}{10}m(5 + 6m)\rho I_{0} ,$$
$$m_{46} = \frac{1}{420}l_{e} (7 - 2m)p\rho A_{0} - \frac{{6mp\rho I_{0} }}{{5l_{e} }},$$
$$m_{55} = \frac{1}{840}l_{e}^{3} (7 + m^{2} )\rho A_{0} + \frac{1}{30}l_{e} (10 + 15m + 9m^{2} )\rho I_{0} ,$$
$$m_{56} = \frac{1}{420}l_{e}^{2} mp\rho A_{0} + \frac{1}{10}(5 + 6m)p\rho I_{0} ,$$
$$m_{66} = \frac{1}{210}l_{e} p^{2} \rho A_{0} + \frac{{6p^{2} \rho I_{0} }}{{5l_{e} }}.$$

Appendix 2

The additional stiffness matrix \({\mathbf{K}}_{{P_{A} }}^{e}\) for dynamic analysis of partial-interaction composite beams considering the influence of axial forces is

$${\mathbf{K}}_{{P_{A} }}^{e} = \frac{P}{{60l_{e} }}\left[ {\begin{array}{*{20}c} {60 + 12m^{2} } & {6l_{e} m^{2} } & {12mp} & { - 60 - 12m^{2} } & {6l_{e} m^{2} } & {12mp} \\ {6l_{e} m^{2} } & {5l_{e}^{2} + 3l_{e} m^{2} } & {6l_{e} mp} & { - 6l_{e} m^{2} } & { - 5l_{e}^{2} + 3l_{e} m^{2} } & {6l_{e} mp} \\ {12mp} & {6l_{e} mp} & {12p^{2} } & { - 12mp} & {6l_{e} mp} & {12p^{2} } \\ { - 60 - 12m^{2} } & { - 6l_{e} m^{2} } & { - 12mp} & {60 + 12m^{2} } & { - 6l_{e} m^{2} } & { - 12mp} \\ {6l_{e} m^{2} } & { - 5l_{e}^{2} + 3l_{e} m^{2} } & {6l_{e} mp} & { - 6l_{e} m^{2} } & {5l_{e}^{2} + 3l_{e} m^{2} } & {6l_{e} mp} \\ {12mp} & {6l_{e} mp} & {12p^{2} } & { - 12mp} & {6l_{e} mp} & {12p^{2} } \\ \end{array} } \right]$$

in which \(m = \frac{1}{1 - \mu }\frac{{\left( {1 + 10\gamma_{2} } \right)l_{e}^{2} }}{{120\gamma_{2} \gamma_{3} h^{2} }}\), \(p = \frac{1}{1 - \mu }\frac{{l_{e} }}{{24\gamma_{2} h}}\) and \(\mu = \frac{{\left( {1 + 12\gamma_{1} } \right)\left( {1 + 10\gamma_{2} } \right)l_{e}^{2} }}{{120\gamma_{2} \gamma_{3} h^{2} }}\),\(\gamma_{1} = \frac{{\overline{D}}}{{Cl_{e}^{2} }}\), \(\gamma_{2} = \frac{{\overline{EA} }}{{k_{s} l_{e}^{2} }}\), \(\gamma_{3} = \frac{{\overline{EA} }}{C}\), \(\overline{D} = EI_{0} + h^{2} \overline{EA}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Jp., Chen, B., Liu, X. et al. Explicit Finite Element Formulations for the Free Vibrations and Buckling of Partial-Interaction Composite Beams with Two Sub-components. Int J Steel Struct 23, 1119–1134 (2023). https://doi.org/10.1007/s13296-023-00754-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-023-00754-y

Keywords

Navigation