Skip to main content

Advertisement

Log in

Seagrass metabolism and carbon dynamics in a tropical coastal embayment

  • Report
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Net ecosystem metabolism and subsequent changes in environmental variables were studied seasonally in the seagrass-dominated Palk Bay, located along the southeast coast of India. The results showed that although the water column was typically net heterotrophic, the ecosystem as a whole displayed autotrophic characteristics. The mean net community production from the seagrass meadows was 99.31 ± 45.13 mM C m−2 d−1, while the P/R ratio varied between 1.49 and 1.56. Oxygen produced through in situ photosynthesis, exhibited higher dependence over dissolved CO2 and available light. Apportionment of carbon stores in biomass indicated that nearly three-fourths were available belowground compared to aboveground. However, the sediment horizon accumulated nearly 40 times more carbon than live biomass. The carbon storage capacities of the sediments and seagrass biomass were comparable with the global mean for seagrass meadows. The results of this study highlight the major role of seagrass meadows in modification of seawater chemistry. Though the seagrass meadows of Palk Bay are increasingly subject to human impacts, with coupled regulatory and management efforts focused on improved water quality and habitat conservation, these key coastal ecosystems will continue to be valuable for climate change mitigation, considering their vital role in C dynamics and interactions with the overlying water column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Balasubramanian, T., and M.V.M. Wafar. 1975. Primary productivity of some seagrass beds in the Gulf of Mannar. Mahasagar 8: 87–91.

    Google Scholar 

  • Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnology and Oceanography 57: 698–710.

    Article  CAS  Google Scholar 

  • Benson, B.B., and D. Krause. 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnology and Oceanography 29: 620–632.

    Article  CAS  Google Scholar 

  • Cabaco, S., E.T. Apostolaki, P. García-Marín, R. Gruber, I. Hernández, B. Martínez-Crego, O. Mascaró, M. Pérez, et al. 2013. Effects of nutrient enrichment on seagrass population dynamics: Evidence and synthesis from the biomass–density relationships. Journal of Ecology 101: 1552–1562.

    Article  Google Scholar 

  • Chou, W.C., G.C. Gong, C.C. Hung, and Y.H. Wu. 2013. Carbonate mineral saturation states in the East China Sea: Present conditions and future scenarios. Biogeosciences 10: 6453–6467.

    Article  CAS  Google Scholar 

  • Champenois, W., and A.V. Borges. 2012. Seasonal and interannual variations of community metabolism rates of a Posidonia oceanica seagrass meadow. Limnology and Oceanography 57: 347–361.

    Article  CAS  Google Scholar 

  • Coll, M., A. Schmidt, T. Romanuk, and H.K. Lotze. 2011. Food-web structure of seagrass communities across different spatial scales and human impacts. PLoS ONE 6: e22591. doi:10.1371/journal.pone.0022591.

    Article  CAS  Google Scholar 

  • Duarte, C.M. 1990. Seagrass nutrient content. Marine Ecology Progress Series 67: 201–207.

    Article  Google Scholar 

  • Duarte, C.M., M. Núria, G. Esperança, W.F. James, B. Jeff, B. Cristina, and T.A. Eugenia. 2010. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles 24: 1–8.

    Article  Google Scholar 

  • Duarte, C.M., and D.K. Jensen. 2017. Export from seagrass meadows contributes to marine carbon sequestration. Frontiers in Marine Science. doi:10.3389/fmars.2017.00013.

    Google Scholar 

  • Dufault, A.M., V.R. Cumbo, F. Tung-Yung, and P.J. Edmunds. 2012. Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proceedings of the Royal Society Biological Sciences 279: 2951–2958.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, et al. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505–509.

    Article  CAS  Google Scholar 

  • Ganguly, D., M. Dey, S. Sen, and T.K. Jana. 2009. Biosphere-atmosphere exchange of NOx in the tropical mangrove forest. Journal Geophysical Research. doi:10.1029/2008JG000852.

    Google Scholar 

  • Geevarghese, G.A., A. Babu, G. Magesh, S. Raja, P. Krishnan, R. Purvaja and R. Ramesh. 2016. A comprehensive geospatial assessment of seagrass status in India Abstract No. 1.2, National conference on “Management and conservation of seagrass in India,” organized by Ministry of Environment, Forest and Climate Change, Govt of India, GIZ-GmbH, and IUCN. 12–13 July 2016, New Delhi.

  • Greiner, J.T., K.J. McGlathery, J. Gunnell, and B.A. McKee. 2013. Seagrass restoration enhances “Blue Carbon” sequestration in coastal waters. PLoS ONE 8: e72469. doi:10.1371/journal.pone.0072469.

    Article  CAS  Google Scholar 

  • Gladstone, W. 2009. Conservation and management of tropical coastal ecosystems. In Ecological Connectivity among Tropical Coastal Ecosystems, ed. I. Nagelkerken, 565–605. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Govindasamy, C., and M. Arulpriya. 2011. Seasonal variation in seagrass biomass in Northern Palk Bay, India. Biodiversity 12: 223–231.

    Article  Google Scholar 

  • Gowthaman, R., V. Sanil Kumar, G.S. Dwarakish, S.S. Mohan, J. Singh, and K. Ashok Kumar. 2013. Waves in Gulf of Mannar and Palk Bay around Dhanushkodi, Tamil Nadu, India. Current Science 104: 1431–1435.

    Google Scholar 

  • Grasshoff, K., K. Kremlimg, and M. Ehrhardt. 1999. Analysis by electrochemical methods. In Methods of Sea Water Analysis, ed. K. Grasshoff, M. Ehrhardt, and K. Kremling, 159–226. Weinheim: Wiley.

    Chapter  Google Scholar 

  • Guinottea, J.M., and V.J. Fabry. 2008. Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences 1134: 320–342.

    Article  Google Scholar 

  • Hendriks, I., Y. Olsen, R.L. Basso, A. Stechbauer, T.S. Moore, J. Howard, and C.M. Duarte. 2014. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11: 333–346.

    Article  Google Scholar 

  • Howard, J., S. Hoyt, K. Isensee, M. Telszewski, and E. Pidgeon, editors. 2014. Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Arlington, Virginia: Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature.

  • Jokiel, P.L. 2013. Coral reef calcification: Carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification. Proceedings of Royal Society B 280: 20130031.

    Article  CAS  Google Scholar 

  • Jordan, T.E., J.C. Cornwell, W.R. Boynton, and J.T. Anderson. 2008. Changes in phosphorus biogeochemistry along an estuarine salinity gradient: The iron conveyer belt. Limnology and Oceanography 53: 172–184.

    Article  CAS  Google Scholar 

  • Kaladharan, P., and I.D. Raj. 1989. Primary production of seagrass Cymodocea serrulata and its contribution to the productivity of Amini Atoll, Lakshadweep Islands. Indian Journal of Marine Sciences 18: 215–216.

    Google Scholar 

  • Kennedy, H., J. Beggins, C.M. Duarte, J.W. Fourqurean, M. Holmer, N. Marbà, and J.J. Middelburg. 2010. Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles. doi:10.1029/2010GB003848.

    Google Scholar 

  • Kumaraguru, A.K., K. Jayakumar, and C.M. Ramakritinan. 2003. Coral bleaching 2002 in the Palk Bay. Southeast coast of India. Current Science 85: 1787–1793.

    CAS  Google Scholar 

  • Lamb, J.B., J.A.J.M. van de Water, D.G. Bourne, C. Altier, M.Y. Hein, E.A. Fiorenza, N. Abu, J. Jompa, et al. 2017. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355: 731–733.

    Article  CAS  Google Scholar 

  • Larkum, A.W.D., R.J. Orth, and C.M. Duarte. 2006. Seagrasses: Biology, Ecology and Conservation, 136. Dordrecht: Springer.

    Google Scholar 

  • Lavery, P.S., M.-Á. Mateo, O. Serrano, and M. Rozaimi. 2013. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE 8: e73748.

    Article  CAS  Google Scholar 

  • Lee, K.S., S.R. Park, and Y.K. Kim. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. Journal of Experimental Marine Biology and Ecology 350: 144–175.

    Article  Google Scholar 

  • Lewis, E. and D.W.R. Wallace. 1998. CO2SYS—Program developed for the CO2 system calculations Report ORNL/CDIAC-105 (Oak Ridge, TN: Carbon Dioxide Information Analysis Center, ORNL).

  • Macreadie, P.I., M.E. Baird, S.M. Trevathan-Tackett, A.W. Larkum, and P.J. Ralph. 2014. Quantifying and modelling the carbon sequestration capacity of seagrass meadows: A critical assessment. Marine Pollution Bulletin 83: 430–439.

    Article  CAS  Google Scholar 

  • Manikandan, B., J. Ravindran, S. Shrinivaasu, N. Marimuthu, and K. Paramasivam. 2014. Environmental Monitoring and Assessment 186: 5989–6002.

    Article  CAS  Google Scholar 

  • Manikandan, S., S. Ganesapandian, and K. Parthiban. 2011. Distribution and zonation of seagrasses in the Palk Bay. Southeastern India. Journal of Fisheries and Aquatic Science 6: 178–185.

    Article  Google Scholar 

  • Marsh, G. 2005. Seawater pH and anthropogenic carbon dioxide, 15. Chicago: Argonne National Laboratory. University of Chicago.

    Google Scholar 

  • Millero, F.J., T.B. Graham, F. Huang, H. Bustos-Serrano, and D. Perrot. 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry 100: 80–94.

    Article  CAS  Google Scholar 

  • Odum, H.T. 1956. Primary production in flowing waters. Limnology and Oceanography 1: 102–117.

    Article  Google Scholar 

  • Olivé, I., J. Silva, M.M. Costa, and R. Santos. 2016. Estuaries and Coasts 39: 138. doi:10.1007/s12237-015-9973-z.

    Article  Google Scholar 

  • Onuf, C.P. 1996. Biomass patterns in seagrass meadows of the Laguna Madre, Texas. Bulletin of Marine Science 58: 404–420.

    Google Scholar 

  • Ow, Y.X., N. Vogel, C.J. Collier, J.A.M. Holtum, F. Flores, and S. Uthicke. 2016. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species. Scientific Reports 6: 23093.

    Article  CAS  Google Scholar 

  • Plus, M., I. Auby, D. Maurer, G. Trut, Y. Del Amo, F. Dumas, and B. Thouvenin. 2015. Phytoplankton versus macrophyte contribution to primary production and biogeochemical cycles of a coastal mesotidal system. A modelling approach. Estuarine, Coastal and Shelf Science 165: 52–60.

    Article  CAS  Google Scholar 

  • Qasim, S.Z., and P.M.A. Bhattathiri. 1971. Primary productivity of a seagrass bed on Kavaratti atoll (Laccadives). Hydrobiologia 38: 29–38.

    Article  Google Scholar 

  • Russell, B.D., S.D. Connell, S. Uthicke, N. Muehllehner, K.E. Fabricius, and J.M. Hall-Spencer. 2013. Future seagrass beds: Can increased productivity lead to increased carbon storage? Marine Pollution Bulletin 73: 463–469.

    Article  CAS  Google Scholar 

  • Singh, G., D. Ganguly, A. Paneer Selvam, K. Banerjee, R. Purvaja, and R. Ramesh. 2015. Seagrass ecosystem and climate change: An Indian perspective. Journal of Climate Change 1: 67–74. doi:10.3233/JCC-150005.

    Article  Google Scholar 

  • Sridhar, R., T. Thangaradjou, and L. Kannan. 2008. Comparative investigation of physico-chemical properties of coral reef and seagrass ecosystems of Palk Bay. Indian Journal of Marine Science 37: 207–213.

    CAS  Google Scholar 

  • Shrinithivihahshini, N.D., V. Rajendhiran, S. Mariyaselvam, C. Rengaraj, M. Duraisamy, and R. Dharmaraj. 2014. An assessment of religious ceremonies and their impact on the physico-chemical and microbiological characterization of foremost seawater in Navagraha Temple, Devipattinam, Tamil Nadu, India. Global Journal of Science Frontier Research: H Environment & Earth Science 14: 71–80.

    Google Scholar 

  • Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis, 2nd ed. Fisheries Research Board of Canada

  • Tokoro, T., S. Hosokawa, E. Miyoshi, K. Tada, K. Watanabe, S. Montani, H. Kayanne, and T.I. Kuwae. 2014. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation. Global Change Biology 20: 1873–1884.

    Article  Google Scholar 

  • Unsworth, R.K.F., and L.C. Cullen. 2010. Recognising the necessity for Indo-Pacific seagrass conservation. Conservation Letters 3: 63–73.

    Article  Google Scholar 

  • Unsworth, R.K.F.C.J., M. Collier, L.J. Waycott, and L.Cullen-Unsworth Mckenzie. 2015. A framework for the resilience of seagrass ecosystems. Marine Pollution Bulletin 100: 34–46.

    Article  CAS  Google Scholar 

  • Wagner, W.E.I.I.I. 2016. Using IBM ® SPSS ® statistics for research methods and social science statistics. Thousand Oaks: Sage.

    Google Scholar 

  • Watanabe, K., and K. Tomohiro. 2015. Global Change Biology 21: 2612–2623. doi:10.1111/gcb.12924.

    Article  Google Scholar 

  • Wu, M.-L., Y.G. Hong, J.P. Yin, J.D. Dong, and Y.S. Wang. 2016. Evolution of the sink and source of dissolved inorganic nitrogen with salinity as a tracer during summer in the Pearl River Estuary. Scientific Reports. doi:10.1038/srep36638.

    Google Scholar 

  • Ziegler, S., and R. Benner. 1999. Nutrient cycling in the water column of a subtropical seagrass meadow. Marine Ecology Progress Series 188: 51–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial and technical support of the Ministry of Environment, Forest and Climate Change, Government of India, and the World Bank under the India ICZM Project. We thank Dr. Robert R. Lane of Louisiana State University, USA, for his critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Ramachandran.

Additional information

Dipnarayan Ganguly and Gurmeet Singh have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, D., Singh, G., Ramachandran, P. et al. Seagrass metabolism and carbon dynamics in a tropical coastal embayment. Ambio 46, 667–679 (2017). https://doi.org/10.1007/s13280-017-0916-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-017-0916-8

Keywords

Navigation