Skip to main content

Advertisement

Log in

Galectin-3 regulates metastatic capabilities and chemotherapy sensitivity in epithelial ovarian carcinoma via NF-κB pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

Galectin-3 (Gal-3) has been found to be involved in the tumor progression and chemoresistance of epithelial ovarian cancer (EOC). Some studies have shown that Gal-3 may interact with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). However, it is unclear whether the effects of Gal-3 on the metastasis and chemosensitivity of EOC are related to NF-κB. In this study, we aimed to explore whether Gal-3 promoted progression and carboplatin resistance in EOC via NF-κB pathway. Plasmid transfection and RNA interference were used to upregulate or downregulate the expression of Gal-3 in ovarian cancer cell lines. Then, the expression of Gal-3 and the protein expressions of phosphorylation NF-κB pathway molecules were further detected by Western blot. Transwell migration assay was employed to detect the effects of Gal-3 on the migration and invasion of ovarian cancer cell lines. After treatment with carboplatin, flow cytometry (FCM) was employed to detect the effects of Gal-3 on carboplatin-induced apoptosis. Immunofluorescence technique was used to examine the translocation of phosphorylated P65 into the nucleus in ovarian cancer cells after the upregulation of Gal-3. After the knockdown of Gal-3 by small interfering RNA (siRNA), the migration and the invasion of cancer cells were significantly inhibited while the apoptosis and the sensitivities to carboplatin increased. Western blot showed reduction in the phosphorylation components of the NF-κB pathway: inhibitor of kappa B (IκB), IκB kinase (IKK), and P65. However, after the Gal-3 upregulation by plasmid transfection, the capabilities of migration and invasion of cancer cells were significantly promoted while the apoptosis and the sensitivities to carboplatin decreased. Immunofluorescence showed increased nuclear translocation of P65. Inhibitors of the NF-κB pathway did not affect the Gal-3 expression level in ovarian cancer cells. Gal-3 may affect the migratory and invasive capabilities of cancer cells as well as the chemosensitiviy to carboplatin in EOC by acting through the NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kigawa J. New strategy for overcoming resistance to chemotherapy of ovarian cancer. Yonago Acta Med. 2013;56:43–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Stewart LA, Guthrie D, Parmar MK, Williams CJ. Chemotherapy in advanced ovarian cancer. BMJ. 1992;304:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365:2473–83.

    Article  CAS  PubMed  Google Scholar 

  4. Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365:2484–96.

    Article  CAS  PubMed  Google Scholar 

  5. Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A. Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res. 1997;57:5272–6.

    CAS  PubMed  Google Scholar 

  6. Hoyer KK, Pang M, Gui D, Shintaku IP, Kuwabara I, Liu FT, et al. An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am J Pathol. 2004;164:893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miyazaki J, Hokari R, Kato S, Tsuzuki Y, Kawaguchi A, Nagao S, et al. Increased expression of galectin-3 in primary gastric cancer and the metastatic lymph nodes. Oncol Rep. 2002;9:1307–12.

    CAS  PubMed  Google Scholar 

  8. Merseburger AS, Kramer MW, Hennenlotter J, Simon P, Knapp J, Hartmann JT, et al. Involvement of decreased galectin-3 expression in the pathogenesis and progression of prostate cancer. Prostate. 2008;68:72–7.

    Article  PubMed  Google Scholar 

  9. Brustmann H. Epidermal growth factor receptor expression in serous ovarian carcinoma: an immunohistochemical study with galectin-3 and cyclin D1 and outcome. Int J Gynecol Pathol. 2008;27:380–9.

    Article  PubMed  Google Scholar 

  10. Oishi T, Itamochi H, Kigawa J, Kanamori Y, Shimada M, Takahashi M, et al. Galectin-3 may contribute to cisplatin resistance in clear cell carcinoma of the ovary. Int J Gynecol Cancer. 2007;17:1040–6.

    Article  CAS  PubMed  Google Scholar 

  11. Kim MK, Sung CO, Do IG, Jeon HK, Song TJ, Park HS, et al. Overexpression of galectin-3 and its clinical significance in ovarian carcinoma. Int J Clin Oncol. 2011;16:352–8.

    Article  CAS  PubMed  Google Scholar 

  12. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin Jr AS. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999;19:5785–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang S, Robinson JB, Deguzman A, Bucana CD, Fidler IJ. Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res. 2000;60:5334–9.

    CAS  PubMed  Google Scholar 

  14. Andela VB, Schwarz EM, Puzas JE, O’Keefe RJ, Rosier RN. Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by nuclear factor kappaB. Cancer Res. 2000;60:6557–62.

    CAS  PubMed  Google Scholar 

  15. Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest. 2001;107:241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kadrofske MM, Openo KP, Wang JL. The human LGALS3 (galectin-3) gene: determination of the gene structure and functional characterization of the promoter. Arch Biochem Biophys. 1998;349:7–20.

    Article  CAS  PubMed  Google Scholar 

  17. Mirandola L, Yu Y, Cannon MJ, Jenkins MR, Rahman RL, Nguyen DD, et al. Galectin-3 inhibition suppresses drug resistance, motility, invasion and angiogenic potential in ovarian cancer. Gynecol Oncol. 2014;135:573–9.

    Article  CAS  PubMed  Google Scholar 

  18. Nangia-Makker P, Balan V, Raz A. Galectin-3 binding and metastasis. Methods Mol Biol. 2012;878:251–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu KL, Huang EY, Jhu EW, Huang YH, Su WH, Chuang PC, et al. Overexpression of galectin-3 enhances migration of colon cancer cells related to activation of the K-Ras-Raf-Erk1/2 pathway. J Gastroenterol. 2013;48:350–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi T, Shimura T, Yajima T, Kubo N, Araki K, Tsutsumi S, et al. Transient gene silencing of galectin-3 suppresses pancreatic cancer cell migration and invasion through degradation of beta-catenin. Int J Cancer. 2011;129:2775–86.

    Article  CAS  PubMed  Google Scholar 

  21. Kim SJ, Choi IJ, Cheong TC, Lee SJ, Lotan R, Park SH, et al. Galectin-3 increases gastric cancer cell motility by up-regulating fascin-1 expression. Gastroenterology. 2010;138:1035–45.e1-2.

    Article  CAS  PubMed  Google Scholar 

  22. Covens A, Carey M, Bryson P, Verma S, Fung KFM, Johnston M. Systematic review of first-line chemotherapy for newly diagnosed postoperative patients with stage II, III, or IV epithelial ovarian cancer. Gynecol Oncol. 2002;85:71–80.

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz PE. Current diagnosis and treatment modalities for ovarian cancer. Cancer Treat Res. 2002;107:99–118.

    PubMed  Google Scholar 

  24. Lin CI, Whang EE, Abramson MA, Donner DB, Bertagnolli MM, Moore Jr FD, et al. Galectin-3 regulates apoptosis and doxorubicin chemoresistance in papillary thyroid cancer cells. Biochem Biophys Res Commun. 2009;379:626–31.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Nangia-Makker P, Balan V, Hogan V, Raz A. Calpain activation through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment. Cell Death Dis. 2010;1:e101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wongkham S, Junking M, Wongkham C, Sripa B, Chur-In S, Araki N. Suppression of galectin-3 expression enhances apoptosis and chemosensitivity in liver fluke-associated cholangiocarcinoma. Cancer Sci. 2009;100:2077–84.

    Article  CAS  PubMed  Google Scholar 

  27. Hossein G, Keshavarz M, Ahmadi S, Naderi N. Synergistic effects of PectaSol-C modified citrus pectin an inhibitor of galectin-3 and paclitaxel on apoptosis of human SKOV-3 ovarian cancer cells. Asian Pac J Cancer Prev. 2013;14:7561–8.

    Article  PubMed  Google Scholar 

  28. Choi YK, Cho SG, Woo SM, Yun YJ, Jo J, Kim W, et al. Saussurea lappa Clarke-derived costunolide prevents TNF alpha-induced breast cancer cell migration and invasion by inhibiting NF-kappa B activity. Evid Based Complement Alternat Med. 2013;2013:936257.

    PubMed  PubMed Central  Google Scholar 

  29. Lu KW, Chen JC, Lai TY, Yang JS, Weng SW, Ma YS, et al. Gypenosides inhibits migration and invasion of human oral cancer SAS cells through the inhibition of matrix metalloproteinase-2 -9 and urokinase-plasminogen by ERK1/2 and NF-kappa B signaling pathways. Hum Exp Toxicol. 2011;30:406–15.

    Article  CAS  PubMed  Google Scholar 

  30. Zeng W, Chang H, Ma M, Li Y. CCL20/CCR6 promotes the invasion and migration of thyroid cancer cells via NF-kappa B signaling-induced MMP-3 production. Exp Mol Pathol. 2014;97:184–90.

    Article  CAS  PubMed  Google Scholar 

  31. Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, et al. Inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem. 2004;279:23477–85.

    Article  CAS  PubMed  Google Scholar 

  32. Das KC, White CW. Activation of NF-kappaB by antineoplastic agents. Role of protein kinase C. J Biol Chem. 1997;272:14914–20.

    Article  CAS  PubMed  Google Scholar 

  33. Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, et al. Inhibition of inhibitor of nuclear factor-kappaB phosphorylation increases the efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Clin Cancer Res. 2004;10:7645–54.

    Article  CAS  PubMed  Google Scholar 

  34. Dumic J, Lauc G, Flogel M. Expression of galectin-3 in cells exposed to stress-roles of jun and NF-kappaB. Cell Physiol Biochem. 2000;10:149–58.

    Article  CAS  PubMed  Google Scholar 

  35. Mirandola L, Nguyen DD, Rahman RL, Grizzi F, Yuefei Y, Figueroa JA, et al. Anti-galectin-3 therapy: a new chance for multiple myeloma and ovarian cancer. Int Rev Immunol. 2014;33:417–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology Planning Project of Guangdong Province, China. The grant number is 2013B021800234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqiu Lin.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Liu, Y., Wang, D. et al. Galectin-3 regulates metastatic capabilities and chemotherapy sensitivity in epithelial ovarian carcinoma via NF-κB pathway. Tumor Biol. 37, 11469–11477 (2016). https://doi.org/10.1007/s13277-016-5004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5004-3

Keywords

Navigation