Skip to main content

Advertisement

Log in

7SK small nuclear RNA inhibits cancer cell proliferation through apoptosis induction

  • Research Article
  • Published:
Tumor Biology

Abstract

7SK small nuclear RNA (snRNA) is a 331–333-bp non-coding RNA, which recruits HEXIM 1/2 protein to inhibit positive elongation factor b (P-TEFb) activity. P-TEFb is an essential factor in alleviating promoter-proximal paused RNA polymerase II (Pol II) and initiating the productive elongation phase of gene transcription. Without this protein, Pol II will remain in its hypophosphorylated state, and no transcription occurs. In this study, we inhibited P-TEFb activity by over-expressing 7SK snRNA in human embryonic kidney (HEK) 293T cancer cell line. This inhibition led to a significant decrease in cell viability, which can be due to the transcription inhibition. Moreover, 7SK snRNA over-expression promoted apoptosis in cancerous cells. Our results suggest 7SK snRNA as a potential endogenous anti-cancer agent, and to the best of our knowledge, this is the first study that uses a long non-coding RNA’s over-expression against cancer cell growth and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maher B. ENCODE: the human encyclopaedia. Nature. 2012;489(7414):46–8.

    Article  PubMed  Google Scholar 

  2. Lukovic D et al. Non-coding RNAs in pluripotency and neural differentiation of human pluripotent stem cells. Front Genet. 2014;5:132.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Petri R et al. miRNAs in brain development. Exp Cell Res. 2014;321(1):84–9.

    Article  CAS  PubMed  Google Scholar 

  4. Pagani M et al. Role of microRNAs and long-non-coding RNAs in CD4(+) T-cell differentiation. Immunol Rev. 2013;253(1):82–96.

    Article  PubMed  Google Scholar 

  5. Hu W, Alvarez-Dominguez JR, Lodish HF. Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep. 2012;13(11):971–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clark BS, Blackshaw S. Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet. 2014;5:164.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shimoni Y et al. Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol Syst Biol. 2007;3:138.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article  CAS  PubMed  Google Scholar 

  9. Bergmann JH, Spector DL. Long non-coding RNAs: modulators of nuclear structure and function. Curr Opin Cell Biol. 2014;26:10–8.

    Article  CAS  PubMed  Google Scholar 

  10. Gupta RA et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schickel R et al. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008;27(45):5959–74.

    Article  CAS  PubMed  Google Scholar 

  12. Yang BF, Lu YJ, Wang ZG. MicroRNAs and apoptosis: implications in the molecular therapy of human disease. Clin Exp Pharmacol Physiol. 2009;36(10):951–60.

    Article  CAS  PubMed  Google Scholar 

  13. Derrien T et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1(5):391–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71(1):3–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gutschner T et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73(3):1180–9.

    Article  CAS  PubMed  Google Scholar 

  18. Yang G, Lu X, and Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014.

  19. Wassarman DA, Steitz JA. Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol Cell Biol. 1991;11(7):3432–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krueger BJ et al. LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res. 2008;36(7):2219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeronimo C et al. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell. 2007;27(2):262–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen VT et al. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature. 2001;414(6861):322–5.

    Article  CAS  PubMed  Google Scholar 

  23. Yang Z et al. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature. 2001;414(6861):317–22.

    Article  CAS  PubMed  Google Scholar 

  24. Peterlin BM, Brogie JE, Price DH. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdiscip Rev RNA. 2012;3(1):92–103.

    Article  CAS  PubMed  Google Scholar 

  25. Peng J et al. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 1998;12(5):755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Q et al. Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186. J Biol Chem. 2005;280(31):28819–26.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Q, Li T, Price DH. RNA polymerase II elongation control. Annu Rev Biochem. 2012;81:119–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moiola C et al. Cyclin T1 overexpression induces malignant transformation and tumor growth. Cell Cycle. 2010;9(15):3119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kota SK, Balasubramanian S. Cancer therapy via modulation of micro RNA levels: a promising future. Drug Discov Today. 2010;15(17–18):733–40.

    Article  CAS  PubMed  Google Scholar 

  30. Vitiello M, Tuccoli A, and Poliseno L. Long non-coding RNAs in cancer: implications for personalized therapy. Cell Oncol (Dordr). 2014.

  31. Tripathi V et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang J et al. Lentivirus-mediated RNA interference targeting the long noncoding RNA HOTAIR inhibits proliferation and invasion of endometrial carcinoma cells in vitro and in vivo. Int J Gynecol Cancer. 2014;24(4):635–42.

    Article  PubMed  Google Scholar 

  33. Cheng Y et al. LARP7 is a potential tumor suppressor gene in gastric cancer. Lab Invest. 2012;92(7):1013–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ji X et al. LARP7 suppresses P-TEFb activity to inhibit breast cancer progression and metastasis. Elife. 2014;3:e02907.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nielsen S, Yuzenkova Y, Zenkin N. Mechanism of eukaryotic RNA polymerase III transcription termination. Science. 2013;340(6140):1577–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dong X et al. PlasMapper: a web server for drawing and auto-annotating plasmid maps. Nucleic Acids Res. 2004;32(Web Server issue):W660-4.

    PubMed  Google Scholar 

  37. Pfeifer A et al. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc Natl Acad Sci U S A. 2001;98(20):11450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.

    Article  CAS  PubMed  Google Scholar 

  39. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chao SH, Price DH. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem. 2001;276(34):31793–9.

    Article  CAS  PubMed  Google Scholar 

  41. Lee Y et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Adelman K, Lis JT. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet. 2012;13(10):720–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smith E, Shilatifard A. Transcriptional elongation checkpoint control in development and disease. Genes Dev. 2013;27(10):1079–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell. 2006;23(3):297–305.

    Article  CAS  PubMed  Google Scholar 

  45. Yamada T et al. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol Cell. 2006;21(2):227–37.

    Article  CAS  PubMed  Google Scholar 

  46. Guha M. Blockbuster dreams for Pfizer’s CDK inhibitor. Nat Biotechnol. 2013;31(3):187.

    Article  CAS  PubMed  Google Scholar 

  47. Hofmeister CC et al. A phase I trial of flavopiridol in relapsed multiple myeloma. Cancer Chemother Pharmacol. 2014;73(2):249–57.

    Article  CAS  PubMed  Google Scholar 

  48. Mizrahi A et al. Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J Transl Med. 2009;7:69.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ehsan Seyedjafari or Hossein Ghanbarian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

a. Gel electrophoresis image of 7SK snRNA cloned into pCDH-H1 vector, lanes from left to right are correspond to 1 kb ladder, undigested pCDH-7SK vector, pCDH-7SK digested with BamHI, and pCDH-7SK digested with BamHI and EcoRI. 330 bp band relates to cloned 7SK snRNA. b. Gel electrophoresis image of pCDH-H1 vector before cloning. (JPEG 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keramati, F., Seyedjafari, E., Fallah, P. et al. 7SK small nuclear RNA inhibits cancer cell proliferation through apoptosis induction. Tumor Biol. 36, 2809–2814 (2015). https://doi.org/10.1007/s13277-014-2907-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2907-8

Keywords

Navigation