Skip to main content
Log in

Arsenic trioxide potentiates the anti-cancer activities of sorafenib against hepatocellular carcinoma by inhibiting Akt activation

  • Research Article
  • Published:
Tumor Biology

Abstract

Sorafenib is the standard first-line systemic drug for advanced hepatocellular carcinoma (HCC), but it also induces the activation of Akt, which contributes to the mechanisms for the resistance to sorafenib. Arsenic trioxide (ATO) is a currently clinically used anticancer drug and displays its anticancer activities by inhibiting Akt activation. Therefore, we hypothesized that ATO may potentiate the anti-cancer activities of sorafenib against HCC. The results have demonstrated that ATO synergized with sorafenib to inhibit the proliferation and promote the apoptosis of HCC cells by diminishing the increased activation of Akt by sorafenib. ATO was shown to inhibit the expression or activation of Akt downstream factors, including glycogen synthase kinase (GSK)-3β, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (S6K), and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which regulate cell apoptosis and were upregulated or activated by sorafenib. Both sorafenib and ATO downregulated the expression of cyclin D1, resulting in HCC cells arrested at G0/G1 phase. ATO downregulated the expression of Bcl-2 and Bcl-xL and upregulated the expression of Bax, indicating that ATO could induce the apoptosis of HCC cells through the intrinsic pathways; but sorafenib showed little effects on these proteins of Bcl-2 family. ATO synergized with sorafenib to suppress the growth of HCC tumors established in mice by inhibiting the proliferation and inducing the apoptosis of HCC cells in situ. These results indicate that ATO may be a potential agent that given in combination with sorafenib acts synergistically for treating HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Zhu AX. Systemic treatment of hepatocellular carcinoma: dawn of a new era? Ann Surg Oncol. 2010;17:1247–56.

    Article  PubMed  Google Scholar 

  3. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  PubMed  Google Scholar 

  4. Bruix J, Sherman M. American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kelley RK, Nimeiri HS, Munster PN, Vergo MT, Huang Y, Li CM, et al. Temsirolimus combined with sorafenib in hepatocellular carcinoma: a phase I dose-finding trial with pharmacokinetic and biomarker correlates. Ann Oncol. 2013;24:1900–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36:320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou L, Huang Y, Li J, Wang Z. The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol. 2010;27:255–61.

    Article  CAS  PubMed  Google Scholar 

  9. Gedaly R, Angulo P, Hundley J, Daily MF, Chen C, Koch A, et al. PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. Anticancer Res. 2010;30:4951–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Huynh H, Ngo VC, Koong HN, Poon D, Choo SP, Thng CH, et al. Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Cell Mol Med. 2009;13:2673–83.

    Article  PubMed  Google Scholar 

  11. Piguet AC, Saar B, Hlushchuk R, St-Pierre MV, McSheehy PM, Radojevic V, et al. Everolimus augments the effects of sorafenib in a syngeneic orthotopic model of hepatocellular carcinoma. Mol Cancer Ther. 2011;10:1007–17.

    Article  CAS  PubMed  Google Scholar 

  12. Chen KF, Chen HL, Tai WT, Feng WC, Hsu CH, Chen PJ, et al. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther. 2011;337:155–61.

    Article  CAS  PubMed  Google Scholar 

  13. Zhai B, Hu F, Jiang X, Xu J, Zhao D, Liu B, et al. Inhibition of Akt reverses the acquired resistance to sorafenib by inducing autophagic cell death in hepatocellular carcinoma. Cancer Mol Ther. 2014;13:1589–98.

    Article  CAS  Google Scholar 

  14. Lin J, Sampath D, Nannini MA, Lee BB, Degtyarev M, Oeh J, et al. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin Cancer Res. 2013;19:1760–72.

    Article  CAS  PubMed  Google Scholar 

  15. Antman KH. Introduction: the history of arsenic trioxide in cancer therapy. Oncologist. 2001;6:1–2.

    Article  CAS  PubMed  Google Scholar 

  16. Luo L, Qiao H, Meng F, Dong X, Zhou B, Jiang H, et al. Arsenic trioxide synergizes with B7H3-mediated immunotherapy to eradicate hepatocellular carcinomas. Int J Cancer. 2006;118:1823–30.

    Article  CAS  PubMed  Google Scholar 

  17. Alarifi S, Ali D, Alkahtani S, Siddiqui MA, Ali BA. Arsenic trioxide-mediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells. Oncol Targets Ther. 2013;6:75–84.

    CAS  Google Scholar 

  18. Chen G, Wang K, Yang BY, Tang B, Chen JX, Hua ZC. Synergistic antitumor activity of oridonin and arsenic trioxide on hepatocellular carcinoma cells. Int J Oncol. 2012;40:139–47.

    PubMed  Google Scholar 

  19. Lin CC, Hsu C, Hsu CH, Hsu WL, Cheng AL, Yang CH. Arsenic trioxide in patients with hepatocellular carcinoma: a phase II trial. Investig New Drugs. 2007;25:77–84.

    Article  CAS  Google Scholar 

  20. Guilbert C, Annis MG, Dong Z, Siegel PM, Miller Jr WH, Mann KK. Arsenic trioxide overcomes rapamycin-induced feedback activation of AKT and ERK signaling to enhance the anti-tumor effects in breast cancer. PLoS One. 2013;8:e85995. doi:10.1371/journal.pone.0085995.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mann KK, Colombo M, Miller Jr WH. Arsenic trioxide decreases AKT protein in a caspase-dependent manner. Mol Cancer Ther. 2008;7:1680–7.

    Article  CAS  PubMed  Google Scholar 

  22. Xue P, Hou Y, Zhang Q, Woods CG, Yarborough K, Liu H, et al. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: involvement of the adaptive antioxidant response. Biochem Biophys Res Commun. 2011;407:360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao D, Zhai B, He C, Tan G, Jiang X, Pan S, et al. Upregulation of HIF-2α induced by sorafenib contributes to the resistance by activating the TGF-α/EGFR pathway in hepatocellular carcinoma cells. Cell Signal. 2014;26:1030–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ma L, Li G, Zhu H, Dong X, Zhao D, Jiang X, et al. 2-Methoxyestradiol synergizes with sorafenib to suppress hepatocellular carcinoma by simultaneously dysregulating hypoxia-inducible factor-1 and -2. Cancer Lett. 2014. doi:10.1016/j.canlet.2014.09.011.

    PubMed Central  Google Scholar 

  25. Wei Z, Jiang X, Liu F, Qiao H, Zhou B, Zhai B, et al. Downregulation of Skp2 inhibits the growth and metastasis of gastric cancer cells in vitro and in vivo. Tumor Biol. 2013;34:181–92.

    Article  CAS  Google Scholar 

  26. Zhai B, Sun XY. Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol. 2013;5:345–52.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Villanueva A, Llovet JM. Second-line therapies in hepatocellular carcinoma: emergence of resistance to sorafenib. Clin Cancer Res. 2012;18:1824–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Santoro A, Rimassa L, Borbath I, Daniele B, Salvagni S, Van Laethem JL, et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013;14:55–63.

    Article  CAS  PubMed  Google Scholar 

  29. Serova M, de Gramont A, Tijeras-Raballand A, Dos Santos C, Riveiro ME, Slimane K, et al. Benchmarking effects of mTOR, PI3K, and dual PI3K/mTOR inhibitors in hepatocellular and renal cell carcinoma models developing resistance to sunitinib and sorafenib. Cancer Chemother Pharmacol. 2013;71:1297–307.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang H, Ma Y, Chen X, Pan S, Sun B, Krissansen GW, et al. Genistein synergizes with arsenic trioxide to suppress human hepatocellular carcinoma. Cancer Sci. 2010;101:975–83.

    Article  CAS  PubMed  Google Scholar 

  31. Fecteau JF, Bharati IS, O’Hayre M, Handel TM, Kipps TJ, Messmer D. Sorafenib-induced apoptosis of chronic lymphocytic leukemia cells is associated with downregulation of RAF and myeloid cell leukemia sequence 1 (Mcl-1). Mol Med. 2012;18:19–28.

    Article  CAS  PubMed  Google Scholar 

  32. Cervello M, Bachvarov D, Lampiasi N, Cusimano A, Azzolina A, McCubrey JA, et al. Molecular mechanisms of sorafenib action in liver cancer cells. Cell Cycle. 2012;11:2843–55. doi:10.4161/cc.21193.

    Article  CAS  PubMed  Google Scholar 

  33. Tai WT, Shiau CW, Chen HL, Liu CY, Lin CS, Cheng AL, et al. Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells. Cell Death Dis. 2013;4:e485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, et al. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol. 2010;52:698–704.

    Article  CAS  PubMed  Google Scholar 

  35. Rangwala F, Williams KP, Smith GR, Thomas Z, Allensworth JL, Lyerly HK, et al. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines. BMC Cancer. 2012;12:402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rahmani M, Aust MM, Attkisson E, Williams Jr DC, Ferreira-Gonzalez A, Grant S. Inhibition of Bcl-2 antiapoptotic members by obatoclax potently enhances sorafenib-induced apoptosis in human myeloid leukemia cells through a Bim-dependent process. Blood. 2012;119:6089–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.

    Article  CAS  PubMed  Google Scholar 

  38. Parekh P, Rao KV. Overexpression of cyclin D1 is associated with elevated levels of MAP kinases, Akt and Pak1 during diethylnitrosamine-induced progressive liver carcinogenesis. Cell Biol Int. 2007;31:35–43.

    Article  CAS  PubMed  Google Scholar 

  39. Lo RK, Kwong YL. Arsenic trioxide suppressed mantle cell lymphoma by downregulation of cyclin D1. Ann Hematol. 2014;93:255–65.

    Article  CAS  PubMed  Google Scholar 

  40. Xargay-Torrent S, López-Guerra M, Montraveta A, Saborit-Villarroya I, Rosich L, Navarro A, et al. Sorafenib inhibits cell migration and stroma-mediated bortezomib resistance by interfering B-cell receptor signaling and protein translation in mantle cell lymphoma. Clin Cancer Res. 2013;19:586–97.

    Article  CAS  PubMed  Google Scholar 

  41. Plastaras JP, Kim SH, Liu YY, Dicker DT, Dorsey JF, McDonough J, et al. Cell cycle dependent and schedule-dependent antitumor effects of sorafenib combined with radiation. Cancer Res. 2007;67:9443–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Scientific Foundation of China (81172331, 81472321, and 81401975), and Heilongjiang Provincial Scientific Fund for Youths in China (QC2013C103 and QC2013C098).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueying Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, B., Jiang, X., He, C. et al. Arsenic trioxide potentiates the anti-cancer activities of sorafenib against hepatocellular carcinoma by inhibiting Akt activation. Tumor Biol. 36, 2323–2334 (2015). https://doi.org/10.1007/s13277-014-2839-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2839-3

Keywords

Navigation