Skip to main content
Log in

GOLPH3 high expression predicts poor prognosis in patients with resected non-small cell lung cancer: an immunohistochemical analysis

  • Research Article
  • Published:
Tumor Biology

Abstract

Golgi phosphoprotein 3 (GOLPH3) has been reported to be involved in the development of several human tumours. However, little is known about GOLPH3 expression and its clinical significance in non-small cell lung cancer (NSCLC). The present study was conducted to investigate the expression of GOLPH3 and its prognostic significance in NSCLC. Immunohistochemical analysis was used to determine the expression of GOLPH3 in 145 cases NSCLC tissue and their corresponding adjacent normal tissues. The results are the following: (1) The GOLPH3 protein was mainly located in the cytoplasm of NSCLC tissue; (2) GOLPH3 was highly expressed in 71.7 % of NSCLC tissues versus 22.8 % of adjacent tissues (P < 0.01); (3) GOLPH3 expression was significantly associated with tumour-node-metastasis (TNM) stage (P = 0.001), lymph node status (P = 0.014), and degree of differentiation (P = 0.018); (4) The Kaplan–Meier curve indicated that the patients with high GOLPH3 expression had significantly shorter survival than those with low GOLPH3 expression; and (5) Cox regression analysis demonstrated that the expression of GOLPH3, lymph node status, and TNM stage were independent prognostic predictors for NSCLC patients. High GOLPH3 expression is predictive of poor prognosis of NSCLC, implying that GOLPH3 may be a promising new target for targeted therapies for NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barlési F, Giaccone G, Gallegos-Ruiz MI, et al. Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol. 2007;25(28):4358–64.

    Article  PubMed  Google Scholar 

  2. Hung JJ, Jeng WJ, Hsu WH, et al. Time trends of overall survival and survival after recurrence in completely resected stage I non-small cell lung cancer. J Thorac Oncol. 2012;7(2):397–405.

    Article  PubMed  Google Scholar 

  3. Zhu CQ, Shih W, Ling CH, et al. Immunohistochemical markers of prognosis in non-small cell lung cancer: a review and proposal for a multiphase approach to marker evaluation. J Clin Pathol. 2006;59(8):790–800.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sechi S, Colotti G, Belloni G, et al. GOLPH3 is essential for contractile ring formation and Rab11 localization to the cleavage site during cytokinesis in Drosophila melanogaster. PLoS Genet. 2014;10(5):e1004305.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bell AW, Ward MA, Blackstock WP, et al. Proteomics characterization of abundant Golgi membrane proteins. J Biol Chem. 2001;276(7):5152–65.

    Article  CAS  PubMed  Google Scholar 

  6. Scott KL, Kabbarah O, Liang MC, et al. GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer. Nature. 2009;459(7250):1085–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zeng Z, Lin H, Zhao X, et al. Overexpression of GOLPH3 promotes proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. Clin Cancer Res. 2012;18(15):4059–69.

    Article  CAS  PubMed  Google Scholar 

  8. Hua X, Yu L, Pan W, et al. Increased expression of Golgi phosphoprotein-3 is associated with tumor aggressiveness and poor prognosis of prostate cancer. Diagn Pathol. 2012;7:127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wang JH, Chen XT, Wen ZS, et al. High expression of GOLPH3 in esophageal squamous cell carcinoma correlates with poor prognosis. PLoS One. 2012;7(10):e45622.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hu BS, Hu H, Zhu CY, et al. Overexpression of GOLPH3 is associated with poor clinical outcome in gastric cancer. Tumour Biol. 2013;34(1):515–20.

    Article  PubMed  Google Scholar 

  11. Wang Z, Li Z, Wu C, et al. MACC1 overexpression predicts a poor prognosis for non-small cell lung cancer. Med Oncol. 2014;31(1):790.

    Article  PubMed  Google Scholar 

  12. Pereira NA, Pu HX, Goh H, et al. Golgi phosphoprotein 3 mediates the Golgi localization and function of protein O-linked mannose β-1,2-N-acetlyglucosaminyltransferase 1. J Biol Chem. 2014;289(21):14762–770.

  13. Ng MM, Dippold HC, Buschman MD, et al. GOLPH3L antagonizes GOLPH3 to determine Golgi morphology. Mol Biol Cell. 2013;24(6):796–808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ali MF, Chachadi VB, Petrosyan A, et al. Golgi phosphoprotein 3 determines cell binding properties under dynamic flow by controlling Golgi localization of core 2 N-acetylglucosaminyltransferase 1. J Biol Chem. 2012;287(47):39564–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kunigou O, Nagao H, Kawabata N, et al. Role of GOLPH3 and GOLPH3L in the proliferation of human rhabdomyosarcoma. Oncol Rep. 2011;26(5):1337–42.

    CAS  PubMed  Google Scholar 

  16. Graham TR, Burd CG. Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends Cell Biol. 2011;21(2):113–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Xue Y, Wu G, Liao Y, et al. GOLPH3 is a novel marker of poor prognosis and a potential therapeutic target in human renal cell carcinoma. Br J Cancer. 2014;110(9):2250–60.

    Article  CAS  PubMed  Google Scholar 

  18. Ma Y, Ren Y, Zhang X, et al. High GOLPH3 expression is associated with a more aggressive behavior of epithelial ovarian carcinoma. Virchows Arch. 2014;464(4):443–52.

    Article  CAS  PubMed  Google Scholar 

  19. Cizkova M, Vacher S, Meseure D, et al. PIK3R1 underexpression is an independent prognostic marker in breast cancer. BMC Cancer. 2013;13:545.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kapoor S. Promising, new prognostic markers of esophageal carcinomas. APMIS. 2013;121(10):1011.

    Article  CAS  PubMed  Google Scholar 

  21. Foiani M, Bartek J. Golgi feels DNA’s pain. Cell. 2014;156(3):392–3.

    Article  CAS  PubMed  Google Scholar 

  22. Farber-Katz SE, Dippold HC, Buschman MD, et al. DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell. 2014;156(3):413–27.

    Article  CAS  PubMed  Google Scholar 

  23. Tu L, Chen L, Banfield DK. A conserved N-terminal arginine-motif in GOLPH3- family proteins mediates binding to coatomer. Traffic. 2012;13(11):1496–507.

    Article  CAS  PubMed  Google Scholar 

  24. Dippold HC, Ng MM, Farber-Katz SE, et al. GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell. 2009;139(2):337–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Scott KL, Chin L. Signaling from the Golgi: mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res. 2010;16(8):2229–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Abraham RT. GOLPH3 links the Golgi network to mTOR signaling and human cancer. Pigment Cell Melanoma Res. 2009;22(4):378–9.

    Article  PubMed  Google Scholar 

  27. Bugarcic A, Zhe Y, Kerr MC, et al. Vps26A and Vps26B subunits define distinct retromer complexes. Traffic. 2011;12(12):1759–73.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou X, Zhan W, Bian W, et al. GOLPH3 regulates the migration and invasion of glioma cells though RhoA. Biochem Biophys Res Commun. 2013;433(3):338–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ma, M. & Han, B. GOLPH3 high expression predicts poor prognosis in patients with resected non-small cell lung cancer: an immunohistochemical analysis. Tumor Biol. 35, 10833–10839 (2014). https://doi.org/10.1007/s13277-014-2357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2357-3

Keywords

Navigation