Skip to main content

Advertisement

Log in

Aberrant BLID expression is associated with breast cancer progression

  • Research Article
  • Published:
Tumor Biology

Abstract

In our previous study, we have found that BH3-like motif containing, cell death inducer (BLID) was a tumor suppressor in breast cancer, and its downregulation was correlated with both poor disease-free and overall survival. In the present study, we aimed to explore the possible role of BLID in breast cancer progression. We found that BLID was strongly expressed in all normal breast tissues, and it became lower and wreaker gradually in the progression from normal, UDH (usual ductal hyperplasia), ADH (atypical ductal hyperplasia), and DCIS (ductal carcinoma in situ) to breast cancer. Statistical analysis demonstrated significant different BLID expressions between proliferative and cancerous breast lesions. Our data suggested that loss of BLID may contribute to the progression of intraductal proliferation lesions to breast cancer. Our finding gives a new clue that BLID might be a potential indicator for progression of breast cancer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Croce CM. Oncogenes and cancer. N Engl J Med. 2008;358:502–11.

    Article  CAS  PubMed  Google Scholar 

  3. Bai M, Agnantis NJ, Kamina S, Demou A, Zagorianakou P, Katsaraki A, et al. In vivo cell kinetics in breast carcinogenesis. Breast Cancer Res. 2001;3:276–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ellis IO. Intraductal proliferative lesions of the breast: morphology, associated risk and molecular biology. Mod Pathol. 2010;23 Suppl 2:S1–7.

    Article  CAS  PubMed  Google Scholar 

  5. Mommers EC, Poulin N, Sangulin J, Meijer CJ, Baak JP, van Diest PJ. Nuclear cytometric changes in breast carcinogenesis. J Pathol. 2001;193:33–9.

    Article  CAS  PubMed  Google Scholar 

  6. Page DL, Dupont WD. Anatomic indicators (histologic and cytologic) of increased breast cancer risk. Breast Cancer Res Treat. 1993;28:157–66.

    Article  CAS  PubMed  Google Scholar 

  7. Broustas CG, Gokhale PC, Rahman A, Dritschilo A, Ahmad I, Kasid U. Brcc2, a novel bh3-like domain-containing protein, induces apoptosis in a caspase-dependent manner. J Biol Chem. 2004;279:26780–8.

    Article  CAS  PubMed  Google Scholar 

  8. Cavalli LR, Santos SC, Broustas CG, Rone JD, Kasid UN, Haddad BR. Assignment of the BLID gene to 11q24.1 by fluorescence in situ hybridization. Cancer Genet Cytogenet. 2008;186:120–1.

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Kong X, Wang Y, Yang Q. Brcc2 inhibits breast cancer cell growth and metastasis in vitro and in vivo via downregulating AKT pathway. Cell Death Dis. 2013;4:e757.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Broustas CG, Ross JS, Yang Q, Sheehan CE, Riggins R, Noone AM, et al. The proapoptotic molecule BLID interacts with Bcl-XL and its downregulation in breast cancer correlates with poor disease-free and overall survival. Clin Cancer Res. 2010;16:2939–48.

    Article  CAS  PubMed  Google Scholar 

  11. Singletary SE, Allred C, Ashley P, Bassett LW, Berry D, Bland KI, et al. Revision of the american joint committee on cancer staging system for breast cancer. J Clin Oncol. 2002;20:3628–36.

    Article  PubMed  Google Scholar 

  12. Li X, Xu B, Moran MS, Zhao Y, Su P, Haffty BG, et al. 53 bp1 functions as a tumor suppressor in breast cancer via the inhibition of nf-kappab through mir-146a. Carcinogenesis. 2012;33:2593–600.

    Article  CAS  PubMed  Google Scholar 

  13. Su P, Zhang Q, Yang Q. Immunohistochemical analysis of metadherin in proliferative and cancerous breast tissue. Diagn Pathol. 2010;5:38.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ganesan K, Acharya UR, Chua CK, Min LC, Abraham KT, Ng KH. Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng. 2013;6:77–98.

    Article  PubMed  Google Scholar 

  15. Puliti D, Zappa M. Breast cancer screening: are we seeing the benefit? BMC Med. 2012;10:106.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Esserman LJ, Shieh Y, Rutgers EJ, Knauer M, Retel VP, Mook S, et al. Impact of mammographic screening on the detection of good and poor prognosis breast cancers. Breast Cancer Res Treat. 2011;130:725–34.

    Article  PubMed  Google Scholar 

  17. Skomedal H, Helland A, Kristensen GB, Holm R, Borresen-Dale AL. Allelic imbalance at chromosome region 11q23 in cervical carcinomas. Eur J Cancer. 1999;35:659–63.

    Article  CAS  PubMed  Google Scholar 

  18. Gentile M, Ahnstrom M, Schon F, Wingren S. Candidate tumour suppressor genes at 11q23–q24 in breast cancer: evidence of alterations in pig8, a gene involved in p53-induced apoptosis. Oncogene. 2001;20:7753–60.

    Article  CAS  PubMed  Google Scholar 

  19. Tassano E, Acquila M, Tavella E, Micalizzi C, Panarello C, Morerio C. Microrna-125b-1 and BLID upregulation resulting from a novel IGH translocation in childhood b-cell precursor acute lymphoblastic leukemia. Genes Chromosom Cancer. 2010;49:682–7.

    Article  CAS  PubMed  Google Scholar 

  20. Gentile M, Olsen K, Dufmats M, Wingren S. Frequent allelic losses at 11q24.1–q25 in young women with breast cancer: association with poor survival. Br J Cancer. 1999;80:843–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chunder N, Mandal S, Roy A, Roychoudhury S, Panda CK. Analysis of different deleted regions in chromosome 11 and their interrelations in early- and late-onset breast tumors: association with cyclin d1 amplification and survival. Diagn Mol Pathol. 2004;13:172–82.

    Article  PubMed  Google Scholar 

  22. Climent J, Dimitrow P, Fridlyand J, Palacios J, Siebert R, Albertson DG, et al. Deletion of chromosome 11q predicts response to anthracycline-based chemotherapy in early breast cancer. Cancer Res. 2007;67:818–26.

    Article  CAS  PubMed  Google Scholar 

  23. Cavalli LR, Noone AM, Makambi KH, Rone JD, Kasid UN, Haddad BR. Frequent loss of the BLID gene in early-onset breast cancer. Cytogenet Genome Res. 2011;135:19–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 81072150; No. 81172529; No. 81272903) and Shandong Science and Technology Development Plan (No. 2012GZC22115).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifeng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Su, P., Liu, X. et al. Aberrant BLID expression is associated with breast cancer progression. Tumor Biol. 35, 5449–5452 (2014). https://doi.org/10.1007/s13277-014-1710-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1710-x

Keywords

Navigation