Skip to main content

Advertisement

Log in

Combination of E2F-1 promoter-regulated oncolytic adenovirus and cytokine-induced killer cells enhances the antitumor effects in an orthotopic rectal cancer model

  • Research Article
  • Published:
Tumor Biology

Abstract

Due to the anatomical structure of the rectum, the treatment of rectal cancer remains challenging. Ad-E2F, an oncolytic adenovirus containing the E2F-1 promoter, can selectively replicate within and kill cancer cells derived from solid tumors. Thus, this virus provides a novel approach for the treatment of rectal cancer. Given the poor efficacy and possible adverse reactions that arise from the use of oncolytic virus alone and the results of our analysis of the efficacy of Ad-E2F in the treatment of rectal cancer, we investigated the use of oncolytic adenovirus in combination with adoptive immunotherapy using cytokine-induced killer (CIK) cells as a therapeutic treatment for rectal cancer. Our results illustrated that E2F-1 gene expression is higher in rectal cancer tissue than in normal tissue. Furthermore, the designed oncolytic adenovirus Ad-E2F is capable of selectively killing colorectal cell lines but has no significant effect on CIK cells. The results of in vitro and in vivo experiments demonstrated that combined therapy with Ad-E2F and CIK cells produce stronger antitumor effects than the administration of Ad-E2F or CIK cells alone. For low rectal cancers that are suitable for intratumoral injection, local injections of oncolytic viruses in combination with CIK cell-based adoptive immunotherapy may be suitable as a novel comprehensive therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rullier E, Denost Q, Vendrely V, Rullier A, Laurent C. Low rectal cancer: classification and standardization of surgery. Dis Colon Rectum. 2013;56:560–7.

    Article  PubMed  Google Scholar 

  2. McKenzie SP, Barnes SL, Schwartz RW. An update on the surgical management of rectal cancer. Curr Surg. 2005;62:407–11.

    Article  PubMed  Google Scholar 

  3. Arrazubi V, Suarez J, Novas P, Perez-Hoyos MT, Vera R, Martinez DPP. Chemoradiation of rectal cancer. Minerva Chir. 2013;68:11–26.

    CAS  PubMed  Google Scholar 

  4. Kolodkin-Gal D, Edden Y, Hartshtark Z, Ilan L, Khalaileh A, Pikarsky AJ, et al. Herpes simplex virus delivery to orthotopic rectal carcinoma results in an efficient and selective antitumor effect. Gene Ther. 2009;16:905–15.

    Article  CAS  PubMed  Google Scholar 

  5. Lanson NJ, Friedlander PL, Schwarzenberger P, Kolls JK, Wang G. Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis. Cancer Res. 2003;63:7936–41.

    CAS  PubMed  Google Scholar 

  6. Gupta VK, Park JO, Kurihara T, Koons A, Mauceri HJ, Jaskowiak NT, et al. Selective gene expression using a df3/muc1 promoter in a human esophageal adenocarcinoma model. Gene Ther. 2003;10:206–12.

    Article  CAS  PubMed  Google Scholar 

  7. Zacharatos P, Kotsinas A, Evangelou K, Karakaidos P, Vassiliou LV, Rezaei N, et al. Distinct expression patterns of the transcription factor e2f-1 in relation to tumour growth parameters in common human carcinomas. J Pathol. 2004;203:744–53.

    Article  CAS  PubMed  Google Scholar 

  8. Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, Kletsas D, et al. Transcription factor e2f-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol. 2002;198:142–56.

    Article  CAS  PubMed  Google Scholar 

  9. Nielsen NH, Loden M, Cajander J, Emdin SO, Landberg G. G1-s transition defects occur in most breast cancers and predict outcome. Breast Cancer Res Treat. 1999;56:105–12.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang SY, Liu SC, Al-Saleem LF, Holloran D, Babb J, Guo X, et al. E2f-1: a proliferative marker of breast neoplasia. Cancer Epidemiol Biomarkers Prev. 2000;9:395–401.

    CAS  PubMed  Google Scholar 

  11. Jakubczak JL, Ryan P, Gorziglia M, Clarke L, Hawkins LK, Hay C, et al. An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on e1a, the e2f-1 promoter, and viral replication for selectivity and efficacy. Cancer Res. 2003;63:1490–9.

    CAS  PubMed  Google Scholar 

  12. Tsukuda K, Wiewrodt R, Molnar-Kimber K, Jovanovic VP, Amin KM. An e2f-responsive replication-selective adenovirus targeted to the defective cell cycle in cancer cells: potent antitumoral efficacy but no toxicity to normal cell. Cancer Res. 2002;62:3438–47.

    CAS  PubMed  Google Scholar 

  13. Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S, et al. Cg0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006;12:305–13.

    Article  CAS  PubMed  Google Scholar 

  14. Burke JM, Lamm DL, Meng MV, Nemunaitis JJ, Stephenson JJ, Arseneau JC, et al. A first in human phase 1 study of cg0070, a gm-csf expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol. 2012;188:2391–7.

    Article  CAS  PubMed  Google Scholar 

  15. Crompton AM, Kirn DH. From onyx-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets. 2007;7:133–9.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Yu DC, Chen Y, Amin P, Zhang H, Nguyen N, et al. A hepatocellular carcinoma-specific adenovirus variant, cv890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res. 2001;61:6428–36.

    CAS  PubMed  Google Scholar 

  17. Lavilla-Alonso S, Bauer MM, Abo-Ramadan U, Ristimaki A, Halavaara J, Desmond RA, et al. Macrophage metalloelastase (mme) as adjuvant for intra-tumoral injection of oncolytic adenovirus and its influence on metastases development. Cancer Gene Ther. 2012;19:126–34.

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Wei F, Li H, Ji X, Li S, Chen X. Combination of oncolytic adenovirus and endostatin inhibits human retinoblastoma in an in vivo mouse model. Int J Mol Med. 2013;31:377–85.

    CAS  PubMed  Google Scholar 

  19. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-t immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    Article  CAS  PubMed  Google Scholar 

  20. DeVita VJ, Rosenberg SA. Two hundred years of cancer research. N Engl J Med. 2012;366:2207–14.

    Article  CAS  PubMed  Google Scholar 

  21. Li R, Wang C, Liu L, Du C, Cao S, Yu J, et al. Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase ii clinical study. Cancer Immunol Immunother. 2012;61:2125–33.

    Article  CAS  PubMed  Google Scholar 

  22. Liu L, Zhang W, Qi X, Li H, Yu J, Wei S, et al. Randomized study of autologous cytokine-induced killer cell immunotherapy in metastatic renal carcinoma. Clin Cancer Res. 2012;18:1751–9.

    Article  CAS  PubMed  Google Scholar 

  23. Choi IK, Yun CO. Recent developments in oncolytic adenovirus-based immunotherapeutic agents for use against metastatic cancers. Cancer Gene Ther. 2013;20:70–6.

    Article  CAS  PubMed  Google Scholar 

  24. Yang Z, Zhang Q, Xu K, Shan J, Shen J, Liu L, et al. Combined therapy with cytokine-induced killer cells and oncolytic adenovirus expressing il-12 induce enhanced antitumor activity in liver tumor model. PLoS One. 2012;7:e44802.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hallenbeck PL, Chang YN, Hay C, Golightly D, Stewart D, Lin J, et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther. 1999;10:1721–33.

    Article  CAS  PubMed  Google Scholar 

  26. Wu YM, Zhang KJ, Yue XT, Wang YQ, Yang Y, Li GC, et al. Enhancement of tumor cell death by combining cisplatin with an oncolytic adenovirus carrying mda-7/il-24. Acta Pharmacol Sin. 2009;30:467–77.

    Article  CAS  PubMed  Google Scholar 

  27. Du X, Jin R, Ning N, Li L, Wang Q, Liang W, et al. In vivo distribution and antitumor effect of infused immune cells in a gastric cancer model. Oncol Rep. 2012;28:1743–9.

    CAS  PubMed  Google Scholar 

  28. Ning N, Pan Q, Zheng F, Teitz-Tennenbaum S, Egenti M, Yet J, et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 2012;72:1853–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Donigan M, Norcross LS, Aversa J, Colon J, Smith J, Madero-Visbal R, et al. Novel murine model for colon cancer: non-operative trans-anal rectal injection. J Surg Res. 2009;154:299–303.

    Article  PubMed  Google Scholar 

  30. Kishimoto H, Kojima T, Watanabe Y, Kagawa S, Fujiwara T, Uno F, et al. In vivo imaging of lymph node metastasis with telomerase-specific replication-selective adenovirus. Nat Med. 2006;12:1213–9.

    Article  CAS  PubMed  Google Scholar 

  31. Tsutsumi S, Kuwano H, Morinaga N, Shimura T, Asao T. Animal model of para-aortic lymph node metastasis. Cancer Lett. 2001;169:77–85.

    Article  CAS  PubMed  Google Scholar 

  32. Nettelbeck DM. Cellular genetic tools to control oncolytic adenoviruses for virotherapy of cancer. J Mol Med (Berlin). 2008;86:363–77.

    Article  Google Scholar 

  33. Stevaux O, Dyson NJ. A revised picture of the e2f transcriptional network and rb function. Curr Opin Cell Biol. 2002;14:684–91.

    Article  CAS  PubMed  Google Scholar 

  34. Harbour JW, Dean DC. The rb/e2f pathway: expanding roles and emerging paradigms. Genes Dev. 2000;14:2393–409.

    Article  CAS  PubMed  Google Scholar 

  35. Sherr CJ, McCormick F. The rb and p53 pathways in cancer. Cancer Cell. 2002;2:103–12.

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E. Expression of the e2f family in human gastrointestinal carcinomas. Int J Cancer. 1999;81:535–8.

    Article  CAS  PubMed  Google Scholar 

  37. Bramis J, Zacharatos P, Papaconstantinou I, Kotsinas A, Sigala F, Korkolis DP, et al. E2f-1 transcription factor immunoexpression is inversely associated with tumor growth in colon adenocarcinomas. Anticancer Res. 2004;24:3041–7.

    CAS  PubMed  Google Scholar 

  38. Palaiologou M, Koskinas J, Karanikolas M, Fatourou E, Tiniakos DG. E2f-1 is overexpressed and pro-apoptotic in human hepatocellular carcinoma. Virchows Arch. 2012;460:439–46.

    Article  CAS  PubMed  Google Scholar 

  39. Rojas JJ, Cascallo M, Guedan S, Gros A, Martinez-Quintanilla J, Hemminki A, et al. A modified e2f-1 promoter improves the efficacy to toxicity ratio of oncolytic adenoviruses. Gene Ther. 2009;16:1441–51.

    Article  CAS  PubMed  Google Scholar 

  40. Hao H, Dong YB, Bowling MT, Zhou HS, McMasters KM. Alteration of gene expression in melanoma cells following combined treatment with e2f-1 and doxorubicin. Anticancer Res. 2006;26:1947–56.

    CAS  PubMed  Google Scholar 

  41. Wojton J, Kaur B. Impact of tumor microenvironment on oncolytic viral therapy. Cytokine Growth Factor Rev. 2010;21:127–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther. 2008;8:1581–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hontscha C, Borck Y, Zhou H, Messmer D, Schmidt-Wolf IG. Clinical trials on cik cells: first report of the international registry on cik cells (ircc). J Cancer Res Clin Oncol. 2011;137:305–10.

    Article  CAS  PubMed  Google Scholar 

  44. Li H, Wang C, Yu J, Cao S, Wei F, Zhang W, et al. Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery. Cytotherapy. 2009;11:1076–83.

    Article  CAS  PubMed  Google Scholar 

  45. Thorne SH, Negrin RS, Contag CH. Synergistic antitumor effects of immune cell-viral biotherapy. Science. 2006;311:1780–4.

    Article  CAS  PubMed  Google Scholar 

  46. Sampath P, Li J, Hou W, Chen H, Bartlett DL, Thorne SH. Crosstalk between immune cell and oncolytic vaccinia therapy enhances tumor trafficking and antitumor effects. Mol Ther. 2013;21:620–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohui Du or Rong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

The phenotype of CIK cells. CIK cells from three healthy donors were stained with various antibodies as mentioned previously. The expressions of CD3, CD4, CD8, and CD56 were coincident with previously described results (JPEG 28 kb)

High resolution image (TIFF 1372 kb)

Figure S2

The effect of the adenoviral vectors on the proliferation of CIK cells. CIK cells were infected with Ad-E2F or Ad-EGFP, and the cell survival was measured by the MTT assay at different time points and different MOIs (JPEG 77 kb)

High resolution image (TIFF 90 kb)

Figure S3

The establishment of a BALB/c mouse model of orthotopic rectal cancer. Fourteen days after orthotopic injection, low rectal tumors were directly visible and confirmed by H&E staining (JPEG 114 kb)

High resolution image (TIFF 1045 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Y., Xu, Y., Zhao, Y. et al. Combination of E2F-1 promoter-regulated oncolytic adenovirus and cytokine-induced killer cells enhances the antitumor effects in an orthotopic rectal cancer model. Tumor Biol. 35, 1113–1122 (2014). https://doi.org/10.1007/s13277-013-1149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1149-5

Keywords

Navigation