Skip to main content
Log in

Apicidin-resistant HA22T hepatocellular carcinoma cells massively promote pro-survival capability via IGF-IR/PI3K/Akt signaling pathway activation

  • Research Article
  • Published:
Tumor Biology

Abstract

Despite rapid advances in the diagnostic and surgical procedures, hepatocellular carcinoma (HCC) remains one of the most difficult human malignancies to treat. This may be due to the chemoresistant behaviors of HCC. It is believed that acquired resistance could be overcome and improve the overall survival of HCC patients by understanding the mechanisms of chemoresistance in HCC. A stable HA22T cancer line, which is chronically resistant to a histone deacetylase inhibitor, was established. After comparing the molecular mechanism of apicidin-R HA22T cells to parental ones by Western blotting, cell cycle-regulated proteins did not change in apicidin-R cells, but apicidin-R cells were more proliferative and had higher tumor growth (wound-healing assay and nude mice xenograft model). Moreover, apicidin-R cells displayed increased levels of p-IGF-IR, p-PI3K, p-Akt, Bcl-xL, and Bcl-2 but also significantly inhibited the tumor suppressor PTEN protein and apoptotic pathways when compared to the parental strain. Therefore, the highly proliferative effect of apicidin-R HA22T cells was blocked by Akt knockdown. For all these findings, we believe that novel strategies to attenuate IGF-IR/PI3K/Akt signaling could overcome chemoresistance toward the improvement of overall survival of HCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roberts LR, Gores GJ. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver Dis. 2005;25(2):212–25.

    Article  CAS  PubMed  Google Scholar 

  2. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001;2(10):533–96.

    Article  CAS  PubMed  Google Scholar 

  3. Bruix J, Boix L, Sala M, Llovet JM. Focus on hepatocellular carcinoma. Cancer Cell. 2004;5(3):215–9.

    Article  CAS  PubMed  Google Scholar 

  4. Donato F, Boffetta P, Puoti M. A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int J Cancer. 1998;75(3):347–54.

    Article  CAS  PubMed  Google Scholar 

  5. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362(9399):1907–17.

    Article  PubMed  Google Scholar 

  6. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  7. Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther. 2005;4(4):677–85.

    Article  CAS  PubMed  Google Scholar 

  8. Ferreira CG, Tolis C, Giaccone G. p53 and chemosensitivity. Ann Oncol. 1999;10(9):1011–21.

    Article  CAS  PubMed  Google Scholar 

  9. Xu GW, Sun ZT, Forrester K, Wang XW, Coursen J, Harris CC. Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral-mediated transfer of the wild-type p53 gene. Hepatology. 1996;24(5):1264–8.

    Article  CAS  PubMed  Google Scholar 

  10. Demeret C, Vassetzky Y, Mechali M. Chromatin remodelling and DNA replication: from nucleosomes to loop domains. Oncogene. 2001;20(24):3086–93.

    Article  CAS  PubMed  Google Scholar 

  11. Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009;280(2):168–76.

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Zhang B, Wong N, Lo AW, To KF, Chan AW, et al. Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res. 2011;71(12):4138–49.

    Article  CAS  PubMed  Google Scholar 

  13. Klampfer L, Huang J, Shirasawa S, Sasazuki T, Augenlicht L. Histone deacetylase inhibitors induce cell death selectively in cells that harbor activated kRasV12: the role of signal transducers and activators of transcription 1 and p21. Cancer Res. 2007;67(18):8477–85.

    Article  CAS  PubMed  Google Scholar 

  14. Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol. 2001;13(6):477–83.

    Article  CAS  PubMed  Google Scholar 

  15. Kim YK, Han JW, Woo YN, Chun JK, Yoo JY, Cho EJ, et al. Expression of p21(WAF/Cip1) through Sp1 sites by histone deacetylase inhibitor apicidin requires PI 3-kinase-PKC epsilon signaling pathway. Oncogene. 2003;22(38):6023–31.

    Article  CAS  PubMed  Google Scholar 

  16. Lai JP, Yu C, Moser CD, Aderca I, Han T, Garvey TD, et al. SULF1 inhibits tumor growth and potentiates the effects of histone deacetylase inhibitors in hepatocellular carcinoma. Gastroenterology. 2006;130(7):2130–44.

    Article  CAS  PubMed  Google Scholar 

  17. Ueda T, Takai N, Nishida M, Nasu K, Narahara H. Apicidin, a novel histone deacetylase inhibitor, has profound anti-growth activity in human endometrial and ovarian cancer cells. Int J Mol Med. 2007;19(2):301–8.

    CAS  PubMed  Google Scholar 

  18. Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, et al. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res. 2000;60(21):6068–74.

    CAS  PubMed  Google Scholar 

  19. Kim MS, Son MW, Kim WB, In-Park Y, Moon A. Apicidin, an inhibitor of histone deacetylase, prevents H-ras-induced invasive phenotype. Cancer Lett. 2000;157(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  20. Weiller M, Weiland T, Dunstl G, Sack U, Kunstle G, Wendel A. Differential immunotoxicity of histone deacetylase inhibitors on malignant and naive hepatocytes. Exp Toxicol Patho. 2011;63(5):511–7.

    Article  CAS  Google Scholar 

  21. Lai JP, Sandhu DS, Moser CD, Cazanave SC, Oseini AM, Shire AM, et al. Additive effect of apicidin and doxorubicin in sulfatase 1 expressing hepatocellular carcinoma in vitro and in vivo. J Hepatol. 2009;50(6):1112–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Rubin R, Baserga R. Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab Investig. 1995;73(3):311–31.

    CAS  PubMed  Google Scholar 

  23. Macaulay VM. Insulin-like growth factors and cancer. Br J Cancer. 1992;65(3):311–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Samani AA, Brodt P. The receptor for the type I insulin-like growth factor and its ligands regulate multiple cellular functions that impact on metastasis. Surg Oncol Clin N Am. 2001;10(2):289–312. viii.

    CAS  PubMed  Google Scholar 

  25. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  26. Basera R. Controlling IGF-receptor function: a possible strategy for tumor therapy. Trends Biotechnol. 1996;14(5):150–2.

    Article  Google Scholar 

  27. Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren 2nd PG, et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 2009;69(5):1951–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Benini S, Manara MC, Baldini N, Cerisano V, Massimo S, Mercuri M, et al. Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing’s sarcoma cells. Clin Cancer Res. 2001;7(6):1790–7.

    CAS  PubMed  Google Scholar 

  29. Hellawell GO, Ferguson DJ, Brewster SF, Macaulay VM. Chemosensitization of human prostate cancer using antisense agents targeting the type 1 insulin-like growth factor receptor. BJU Int. 2003;91(3):271–7.

    Article  CAS  PubMed  Google Scholar 

  30. Warshamana-Greene GS, Litz J, Buchdunger E, Garcia-Echeverria C, Hofmann F, Krystal GW. The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res. 2005;11(4):1563–71.

    Article  CAS  PubMed  Google Scholar 

  31. Yuen JS, Akkaya E, Wang Y, Takiguchi M, Peak S, Sullivan M, et al. Validation of the type 1 insulin-like growth factor receptor as a therapeutic target in renal cancer. Mol Cancer Ther. 2009;8(6):1448–59.

    Article  CAS  PubMed  Google Scholar 

  32. Costantini P, Jacotot E, Decaudin Dand Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst. 2000;92(13):1042–53.

    Article  CAS  PubMed  Google Scholar 

  33. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics. Cancer J Clin. 2008;58(2):71–96.

    Article  Google Scholar 

  34. Puisieux A, Galvin K, Troalen F, Bressac B, Marcais C, Galun E, et al. Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines. FASEB J. 1993;7(14):1407–13.

    CAS  PubMed  Google Scholar 

  35. Butt AJ, Firth SM, Baxter RC. The IGF axis and programmed cell death. Immunol Cell Biol. 1999;77(3):256–62.

    Article  CAS  PubMed  Google Scholar 

  36. Bettaieb A, Dubrez-Daloz L, Launay S, Plenchette S, Rebe C, Cathelin S, et al. Bcl-2 proteins: targets and tools for chemosensitisation of tumor cells. Curr Med Chem Anticancer Agents. 2003;3(4):307–18.

    Article  CAS  PubMed  Google Scholar 

  37. Brenner C, le Bras M, Kroemer G. Insights into the mitochondrial signaling pathway: what lessons for chemotherapy? J Clin Immunol. 2003;23(2):73–80.

    Article  CAS  PubMed  Google Scholar 

  38. Hersey P, Zhang XD. Overcoming resistance of cancer cells to apoptosis. J Cell Physiol. 2003;196(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  39. Jaattela M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene. 2004;23(16):2746–56.

    Article  PubMed  Google Scholar 

  40. Kasibhatla S, Tseng B. Why target apoptosis in cancer treatment? Mol Cancer Ther. 2003;2(6):573–80.

    CAS  PubMed  Google Scholar 

  41. Kim R, Emi M, Tanabe K, Toge T. Therapeutic potential of antisense Bcl-2 as a chemosensitizer for cancer therapy. Cancer. 2004;101(11):2491–502.

    Article  CAS  PubMed  Google Scholar 

  42. Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K. The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia. 2001;15(7):1022–32.

    Article  CAS  PubMed  Google Scholar 

  43. Debatin KM, Poncet D, Kroemer G. Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene. 2002;21(57):8786–803.

    Article  CAS  PubMed  Google Scholar 

  44. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626–9.

    Article  CAS  PubMed  Google Scholar 

  45. Reed JC. Apoptosis mechanisms: implications for cancer drug discovery. Oncology. 2004;18(13 Suppl 10):11–20.

    CAS  PubMed  Google Scholar 

  46. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol. 1998;16:395–419.

    Article  CAS  PubMed  Google Scholar 

  47. Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene. 2003;22(53):8590–607.

    Article  CAS  PubMed  Google Scholar 

  48. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275(5303):1132–6.

    Article  CAS  PubMed  Google Scholar 

  49. Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 2003;112(4):481–90.

    Article  CAS  PubMed  Google Scholar 

  50. Zhivotovsky B, Hanson KP, Orrenius S. Back to the future: the role of cytochrome c in cell death. Cell Death Differ. 1998;5(6):459–60.

    Article  CAS  PubMed  Google Scholar 

  51. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281(5381):1305–8.

    Article  CAS  PubMed  Google Scholar 

  52. Strasser A, O’Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem. 2000;69:217–45.

    Article  CAS  PubMed  Google Scholar 

  53. Abe K, Kurakin A, Mohseni-Maybodi M, Kay B, Khosravi-Far R. The complexity of TNF-related apoptosis-inducing ligand. Ann NY Acad Sci. 2000;926:52–63.

    Article  CAS  PubMed  Google Scholar 

  54. Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME. CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J. 2004;23(15):3175–85.

    Article  CAS  PubMed  Google Scholar 

  55. el-Deiry WS. Role of oncogenes in resistance and killing by cancer therapeutic agents. Curr Opin Oncol. 1997;9(1):79–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Yang Huang.

Additional information

Kun-Hsi Tsai and Chih-Yang Huang contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, HH., Cheng, LH., Ho, TJ. et al. Apicidin-resistant HA22T hepatocellular carcinoma cells massively promote pro-survival capability via IGF-IR/PI3K/Akt signaling pathway activation. Tumor Biol. 35, 303–313 (2014). https://doi.org/10.1007/s13277-013-1041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1041-3

Keywords

Navigation