Skip to main content
Log in

Associations between three XRCC1 polymorphisms and glioma risk: a meta-analysis

  • Research Article
  • Published:
Tumor Biology

Abstract

Glioma, especially its most aggressive histological type glioblastoma, is a challenge to human health due to its poor prognosis. Identifying glioma risk factors will improve early diagnosis to prevent tumor progression. Three polymorphisms of X-ray repair cross-complementing groups 1 (XRCC1) Arg399Gln, Arg194Trp, and Arg280His have drawn attention because of their potential associations with the development of glioma. However, the conclusions from different studies are inconsistent. Here, we performed XRCC1 polymorphism–glioma association analyses on data gathered through searching PubMed, ISI Web of Knowledge, Cochrane, and EBSCO databases and meta-analyzing extracted eligible studies. For XRCC1 Arg399Gln (G>A) polymorphism, there were 12 studies with 4,356 cases and 6,616 controls; for Arg194Trp (C>T) polymorphism, there were nine studies with 3,760 cases and 5,971 controls; and for Arg280His (G > A) polymorphism, there were five studies with 1,883 cases and 3,144 controls. Odds ratios as well as their 95 % confidence intervals in three genetic models were used to estimate the strength of the association between XRCC1 genotypes and glioma risk. Based on our main analyses, increased risk was observed in Arg399Gln codominant and dominant models and Arg194Trp homozygous codominant and recessive models. In the stratified analyses for some genetic models, Arg399Gln and Arg194Trp were recognized as risk factors in the Asian but not in the Caucasian population. No associations were detected for Arg280His in any genetic model. This meta-analysis indicates that XRCC1 399Gln and 194Trp variants increase glioma risk. Both of these polymorphisms might raise the susceptibility of glioma in Asian populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion. J Neurooncol. 2004;70(2):217–28.

    Article  PubMed  Google Scholar 

  2. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2(9):494–503. quiz 1 p following 16.

    Article  PubMed  Google Scholar 

  3. Butowski NA, Sneed PK, Chang SM. Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol. 2006;24(8):1273–80.

    Article  CAS  PubMed  Google Scholar 

  4. Huncharek M, Muscat J. Treatment of recurrent high grade astrocytoma; results of a systematic review of 1,415 patients. Anticancer Res. 1998;18(2B):1303–11.

    CAS  PubMed  Google Scholar 

  5. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol. 2004;36(6):1046–69.

    Article  CAS  PubMed  Google Scholar 

  6. Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21(8):1624–36.

    Article  CAS  PubMed  Google Scholar 

  7. Lu AL, Li X, Gu Y, Wright PM, Chang DY. Repair of oxidative DNA damage: mechanisms and functions. Cell Biochem Biophys. 2001;35(2):141–70.

    Article  CAS  PubMed  Google Scholar 

  8. Friedberg EC. How nucleotide excision repair protects against cancer. Nat Rev Cancer. 2001;1(1):22–33.

    Article  CAS  PubMed  Google Scholar 

  9. Aquilina G, Bignami M. Mismatch repair in correction of replication errors and processing of DNA damage. J Cell Physiol. 2001;187(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  10. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  11. Ginsberg G, Angle K, Guyton K, Sonawane B. Polymorphism in the DNA repair enzyme XRCC1: utility of current database and implications for human health risk assessment. Mutat Res. 2011;727(1–2):1–15.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang H, Li W, Franklin MJ, Dudek AZ. Polymorphisms in DNA repair gene XRCC1 and skin cancer risk: a meta-analysis. Anticancer Res. 2011;31(11):3945–52.

    CAS  PubMed  Google Scholar 

  13. Custódio AC, Almeida LO, Pinto GR, Santos MJ, Almeida JRW, Clara CA, et al. Analysis of the polymorphisms XRCC1Arg194Trp and XRCC1Arg399Gln in gliomas. Genet Mol Res. 2011;10(2):1120–9.

    Article  PubMed  Google Scholar 

  14. Felini MJ, Olshan AF, Schroeder JC, North KE, Carozza SE, Kelsey KT, et al. DNA repair polymorphisms XRCC1 and MGMT and risk of adult gliomas. Neuroepidemiology. 2007;29(1–2):55–8.

    Article  PubMed  Google Scholar 

  15. Hu XB, Feng Z, Fan YC, Xiong ZY, Huang QW. Polymorphisms in DNA repair gene XRCC1 and increased genetic susceptibility to glioma. Asian Pac J Cancer Prev. 2011;12(11):2981–4.

    PubMed  Google Scholar 

  16. Kiuru A, Lindholm C, Heinavaara S, Ilus T, Jokinen P, Haapasalo H, et al. XRCC1 and XRCC3 variants and risk of glioma and meningioma. J Neurooncol. 2008;88(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  17. Liu HB, Peng YP, Dou CW, Su XL, Gao NK, Tian FM, et al. Comprehensive study on associations between nine SNPs and glioma risk. Asian Pac J Cancer Prev. 2012;13(10):4905–8.

    Article  PubMed  Google Scholar 

  18. Liu Y, Scheurer ME, El-Zein R, Cao Y, Do KA, Gilbert M, et al. Association and interactions between DNA repair gene polymorphisms and adult glioma. Cancer Epidemiol Biomark Prev. 2009;18(1):204–14.

    Article  CAS  Google Scholar 

  19. Rajaraman P, Hutchinson A, Wichner S, Black PM, Fine HA, Loeffler JS, et al. DNA repair gene polymorphisms and risk of adult meningioma, glioma, and acoustic neuroma. Neuro Oncol. 2010;12(1):37–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Wang D, Hu Y, Gong H, Li J, Ren Y, Li G, et al. Genetic polymorphisms in the DNA repair gene XRCC1 and susceptibility to glioma in a Han population in northeastern China: a case–control study. Gene. 2012;509(2):223–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wang LE, Bondy ML, Shen H, El-Zein R, Aldape K, Cao Y, et al. Polymorphisms of DNA repair genes and risk of glioma. Cancer Res. 2004;64(16):5560–3.

    Article  CAS  PubMed  Google Scholar 

  22. Yosunkaya E, Kucukyuruk B, Onaran I, Gurel CB, Uzan M, Kanigur-Sultuybek G. Glioma risk associates with polymorphisms of DNA repair genes, XRCC1 and PARP1. Br J Neurosurg. 2010;24(5):561–5.

    Article  PubMed  Google Scholar 

  23. Zhou LQ, Ma Z, Shi XF, Yin XL, Huang KX, Jiu ZS, et al. Polymorphisms of DNA repair gene XRCC1 and risk of glioma: a case–control study in Southern China. Asian Pac J Cancer Prev. 2011;12(10):2547–50.

    PubMed  Google Scholar 

  24. Cengiz SL, Acar H, Inan Z, Yavuz S, Baysefer A. Deoxy-ribonucleic acid repair genes XRCC1 and XPD polymorphisms and brain tumor risk. Neurosciences (Riyadh). 2008;13(3):227–32.

    Google Scholar 

  25. Wrensch M, Kelsey KT, Liu M, Miike R, Moghadassi M, Aldape K, et al. Constitutive polymorphisms in DNA repair genes ERCC1, ERCC2, XRCC1, and MGMT in adults with glioma and controls. Neuro-Oncology. 2004;6(4):329–30.

    Google Scholar 

  26. Liu Y, Shete S, Hosking F, Robertson L, Houlston R, Bondy M. Genetic advances in glioma: susceptibility genes and networks. Curr Opin Genet Dev. 2010;20(3):239–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. McKean-Cowdin R, Barnholtz-Sloan J, Inskip PD, Ruder AM, Butler M, Rajaraman P, et al. Associations between polymorphisms in DNA repair genes and glioblastoma. Cancer Epidemiol Biomark Prev. 2009;18(4):1118–26.

    Article  CAS  Google Scholar 

  28. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10(1):101–29.

    Article  Google Scholar 

  29. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.

    CAS  PubMed  Google Scholar 

  30. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  31. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    Article  CAS  PubMed  Google Scholar 

  32. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. R Development Core Team. R: A language and environment for statistical computing. 2010.

  34. Jacobs DI, Bracken MB. Association between XRCC1 polymorphism 399 G- > A and glioma among Caucasians: a systematic review and meta-analysis. BMC Med Genet. 2012;13(1):97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sun JY, Zhang CY, Zhang ZJ, Dong YF, Zhang AL, Wang ZW, et al. Association between XRCC1 gene polymorphisms and risk of glioma development: a meta-analysis. Asian Pac J Cancer Prev. 2012;13(9):4783–8.

    Article  PubMed  Google Scholar 

  36. Wei X, Chen D, Lv T. A functional polymorphism in XRCC1 is associated with glioma risk: evidence from a meta-analysis. Mol Biol Rep. 2013;40(1)567-72.

    Article  Google Scholar 

  37. Zhang L, Qiu Z, Luo J, Shu W. X-ray repair cross-complementing gene 1 Arg399GIn polymorphism and glioma risk among Asians A meta-analysis based on 2326 cases and 3610 controls. Neural Regen Res. 2012;7(29):2313–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Zhang L, Wang Y, Qiu Z, Luo J, Zhou Z, Shu W. The XRCC1 Arg194Trp polymorphism is not a risk factor for glioma: a meta-analysis involving 1,440 cases and 2,562 controls. Exp Ther Med. 2012;4(6):1057–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Gu J, Liu Y, Kyritsis AP, Bondy ML. Molecular epidemiology of primary brain tumors. Neurotherapeutics. 2009;6(3):427–35.

    Article  CAS  PubMed  Google Scholar 

  40. Rajaraman P, Melin BS, Wang Z, McKean-Cowdin R, Michaud DS, Wang SS, et al. Genome-wide association study of glioma and meta-analysis. Hum Genet. 2012;131(12):1877–88.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41(8):899–904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Li WJ, Gu YY, Zhang HJ, Zhou J, Jia HT. Induction of p14ARF by E2F1 contributes to 8-chloro-adenosine-induced apoptosis in human lung cancer H1299 cells. Chemotherapy. 2009;55(5):335–43.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Pan Y, Zheng L, Choe C, Lindgren B, Jensen ED, et al. FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion. Cancer Res. 2011;71(9):3257–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Zhang HJ, Li WJ, Gu YY, Li SY, An GS, Ni JH, et al. p14ARF interacts with E2F factors to form p14ARF-E2F/partner-DNA complexes repressing E2F-dependent transcription. J Cell Biochem. 2010;109(4):693–701.

    CAS  PubMed  Google Scholar 

  45. Zhang HJ, Li WJ, Yang SY, Li SY, Ni JH, Jia HT. 8-Chloro-adenosine-induced E2F1 promotes p14ARF gene activation in H1299 cells through displacing Sp1 from multiple overlapping E2F1/Sp1 sites. J Cell Biochem. 2009;106(3):464–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. Tao Sun at Weill Medical College of Cornell University, Department of Cell and Developmental Biology, for comments and suggestions on the manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Liu, H. & Knauss, J.L. Associations between three XRCC1 polymorphisms and glioma risk: a meta-analysis. Tumor Biol. 34, 3003–3013 (2013). https://doi.org/10.1007/s13277-013-0865-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0865-1

Keywords

Navigation