Skip to main content
Log in

CYP2E1 T7632A and 9-bp insertion polymorphisms and colorectal cancer risk: a meta-analysis based on 4,592 cases and 5,918 controls

  • Research Article
  • Published:
Tumor Biology

Abstract

Previous studies suggest that genetic factors play important roles in the development of colorectal cancer. CYP2E1 T7632A and 9-bp insertion polymorphisms may influence the risk of colorectal cancer, but published results are conflicting. We therefore conducted a meta-analysis comprising 9 case–control studies with 4,592 cases and 5,918 controls. Odds ratios (ORs) with 95 % confidence interval (95 % CI) were used to assess the strength of the associations of CYP2E1 T7632A and 9-bp insertion polymorphisms with colorectal cancer. For CYP2E1 T7632A polymorphism, meta-analysis showed that there was no significant association between the CYP2E1 T7632A polymorphism and colorectal cancer risk under all contrast models (A vs. T: OR = 1.06, 95 % CI 0.88–1.29, P = 0.528; AA vs. TT: OR = 0.85, 95 % CI 0.61–1.19, P = 0.351; AA/TA vs. TT: OR = 1.08, 95 % CI 0.87–1.34, P = 0.484; and AA vs. TT/TA: OR = 0.87, 95 % CI 0.62–1.21, P = 0.395). For CYP2E1 96-bp insertion polymorphism, meta-analysis showed that there was a significant association between the CYP2E1 96-bp insertion polymorphism and colorectal cancer risk under the allele contrast model and the dominant contrast model (for the allele contrast model: OR = 1.20, 95 % CI 1.06–1.36, P = 0.005; for the dominant contrast model: OR = 1.25, 95 % CI 1.07–1.45, P = 0.005). Subgroup analysis by race suggested that there was an obvious association between the CYP2E1 96-bp insertion polymorphism and colorectal cancer risk in Asians under the codominant contrast model. In conclusion, our meta-analysis demonstrates that there is a significant association between the CYP2E1 96-bp insertion polymorphism and colorectal cancer risk, and CYP2E1 9-bp insertion polymorphism is a risk factor for developing colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59:366–78.

    Article  PubMed  Google Scholar 

  2. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, et al. Colorectal cancer. Lancet. 2010;375:1030–47.

    Article  PubMed  Google Scholar 

  3. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    Article  PubMed  CAS  Google Scholar 

  4. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507.

    Article  PubMed  CAS  Google Scholar 

  5. Kennedy DA, Stern SJ, Matok I, Moretti ME, Sarkar M, Adams-Webber T, et al. Folate intake, MTHFR polymorphisms, and the risk of colorectal cancer: a systematic review and meta-analysis. J Cancer Epidemiol. 2012;2012:952508.

    PubMed  Google Scholar 

  6. Zeng FR, Ling Y, Yang J, Tian XC, Yang X, Luo RC. X-ray repair cross-complementing group 1 ARG399GLN gene polymorphism and susceptibility to colorectal cancer: a meta-analysis. Tumour Biol. 2013;34:555–63.

    Article  PubMed  CAS  Google Scholar 

  7. Caro AA, Cederbaum AI. Oxidative stress, toxicology, and pharmacology of cyp2e1. Annu Rev Pharmacol Toxicol. 2004;44:27–42.

    Article  PubMed  CAS  Google Scholar 

  8. Miksys S, Tyndale RF. The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics. Drug Metab Rev. 2004;36:313–33.

    Article  PubMed  CAS  Google Scholar 

  9. Daly AK. Genetic polymorphisms affecting drug metabolism: recent advances and clinical aspects. Adv Pharmacol. 2012;63:137–67.

    Article  PubMed  CAS  Google Scholar 

  10. Huang X, Chen L, Song W, Niu J, Han X, Feng G, et al. Systematic functional characterization of cytochrome P450 2E1 promoter variants in the chinese han population. PLoS One. 2012;7:e40883.

    Article  PubMed  CAS  Google Scholar 

  11. Zhuo W, Zhang L, Wang Y, Ling J, Zhu B, Chen Z. CYP2E1 Rsai/PstI polymorphism and gastric cancer susceptibility: meta-analyses based on 24 case–control studies. PLoS One. 2012;7:e48265.

    Article  PubMed  CAS  Google Scholar 

  12. Le Marchand L, Donlon T, Seifried A, Wilkens LR. Red meat intake, CYP2E1 genetic polymorphisms, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11:1019–24.

    PubMed  Google Scholar 

  13. van der Logt EM, Bergevoet SM, Roelofs HM, Te Morsche RH, Dijk Y, Wobbes T, et al. Role of epoxide hydrolase, NAD(P)H:quinone oxidoreductase, cytochrome P450 2E1 or alcohol dehydrogenase genotypes in susceptibility to colorectal cancer. Mutat Res. 2006;593:39–49.

    Article  PubMed  Google Scholar 

  14. Cotterchio M, Boucher BA, Manno M, Gallinger S, Okey AB, Harper PA. Red meat intake, doneness, polymorphisms in genes that encode carcinogen-metabolizing enzymes, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2008;17:3098–107.

    Article  PubMed  CAS  Google Scholar 

  15. Cleary SP, Cotterchio M, Shi E, Gallinger S, Harper P. Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk. Am J Epidemiol. 2010;172:1000–14.

    Article  PubMed  Google Scholar 

  16. Morita M, Le Marchand L, Kono S, Yin G, Toyomura K, Nagano J, et al. Genetic polymorphisms of CYP2E1 and risk of colorectal cancer: the Fukuoka colorectal cancer study. Cancer Epidemiol Biomarkers Prev. 2009;18:235–41.

    Article  PubMed  CAS  Google Scholar 

  17. Darazy M, Balbaa M, Mugharbil A, Saeed H, Sidani H, Abdel-Razzak Z. CYP1A1, CYP2E1, and GSTM1 gene polymorphisms and susceptibility to colorectal and gastric cancer among Lebanese. Genet Test Mol Biomarkers. 2011;15:423–9.

    Article  PubMed  CAS  Google Scholar 

  18. Sameer AS, Nissar S, Qadri Q, Alam S, Baba SM, Siddiqi MA. Role of CYP2E1 genotypes in susceptibility to colorectal cancer in the Kashmiri population. Hum Genomics. 2011;5:530–7.

    Article  PubMed  CAS  Google Scholar 

  19. Silva TD, Felipe AV, Pimenta CA, Barao K, Forones NM. CYP2E1 Rsai and 96-bp insertion genetic polymorphisms associated with risk for colorectal cancer. Genet Mol Res. 2012;11:3138–45.

    Article  PubMed  CAS  Google Scholar 

  20. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  Google Scholar 

  21. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  PubMed  CAS  Google Scholar 

  22. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

    PubMed  CAS  Google Scholar 

  23. Yang H, Cao J. Genetic association study between polymorphisms of major alcohol metabolizing and JWA genes and colorectal cancer. Wanfang Doctoral Dissertation 2009; The Third Military Medical University.

  24. Huo R, Tang K, Wei Z, Shen L, Xiong Y, Wu X, et al. Genetic polymorphisms in CYP2E1: association with schizophrenia susceptibility and risperidone response in the Chinese Han population. PLoS One. 2012;7:e34809.

    Article  PubMed  CAS  Google Scholar 

  25. Hiratsuka M. In vitro assessment of the allelic variants of cytochrome p450. Drug Metab Pharmacokinet. 2012;27:68–84.

    Article  PubMed  CAS  Google Scholar 

  26. Neafsey P, Ginsberg G, Hattis D, Johns DO, Guyton KZ, Sonawane B. Genetic polymorphism in CYP2E1: Population distribution of CYP2E1 activity. J Toxicol Environ Health B Crit Rev. 2009;12:362–88.

    Article  PubMed  CAS  Google Scholar 

  27. Boccia S, De Lauretis A, Gianfagna F, van Duijn CM, Ricciardi G. CYP2E1Psti/RsaI polymorphism and interaction with tobacco, alcohol and GSTs in gastric cancer susceptibility: a meta-analysis of the literature. Carcinogenesis. 2007;28:101–6.

    Article  PubMed  CAS  Google Scholar 

  28. Liu C, Wang H, Pan C, Shen J, Liang Y. CYP2E1 Psti/RsaI polymorphism and interaction with alcohol consumption in hepatocellular carcinoma susceptibility: evidence from 1,661 cases and 2,317 controls. Tumour Biol. 2012;33:979–84.

    Article  PubMed  CAS  Google Scholar 

  29. Wang Y, Yang H, Li L, Wang H, Zhang C, Yin G, et al. Association between CYP2E1 genetic polymorphisms and lung cancer risk: a meta-analysis. Eur J Cancer. 2010;46:758–64.

    Article  PubMed  CAS  Google Scholar 

  30. Niu Y, Hu Y, Wu M, Jiang F, Shen M, Tang C, et al. CYP2E1 Rsa i/Pst I polymorphism contributes to oral cancer susceptibility: a meta-analysis. Mol Biol Rep. 2012;39:607–12.

    Article  PubMed  CAS  Google Scholar 

  31. Niu Y, Yuan H, Leng W, Pang Y, Gu N, Chen N. CYP2E1 Rsa i/Pst I polymorphism and esophageal cancer risk: a meta-analysis based on 1,088 cases and 2,238 controls. Med Oncol. 2011;28:182–7.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no any conflicts of interest in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangfa Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, J., Song, Z., Lv, Y. et al. CYP2E1 T7632A and 9-bp insertion polymorphisms and colorectal cancer risk: a meta-analysis based on 4,592 cases and 5,918 controls. Tumor Biol. 34, 2225–2231 (2013). https://doi.org/10.1007/s13277-013-0762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0762-7

Keywords

Navigation