Skip to main content

Advertisement

Log in

The role of nuclear medicine in modern therapy of cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Nuclear medicine is a multidisciplinary field that develops and uses instrumentation and tracers (radiopharmaceuticals) to study physiological processes and noninvasively diagnose, stage, and treat diseases. Particularly, it offers a unique means to study cancer biology in vivo and to optimize cancer therapy for individual patients. A tracer is either a radionuclide alone, such as iodine-131 or a radiolabel in a carrier molecule such as 18F in fluorodeoxyglucose (18F-FDG), or other feasible radionuclide attached to a drug, a protein, or a peptide, which when introduced into the body, would accumulate in the tissue of interest. Nuclear medicine imaging, including single-photon emission computer tomography and positron emission tomography, can provide important quantitative and functional information about normal tissues or disease conditions, in contrast to conventional, anatomical imaging techniques such as ultrasound, computed tomography, or magnetic resonance imaging. For treatment, tumor-targeting agents, conjugated with therapeutic radionuclides, may be used to deposit lethal radiation at tumor sites. This review outlines the role of nuclear medicine in modern cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Williams FH. Early treatment of some epitheliomas by pure radium salts. Boston Medical and Surgical Journal. 1909;160:302–4.

    Article  Google Scholar 

  2. Proescher F, Almquest BR. Contribution on the biological and pathological action of soluble radium salts—with special reference to its therapeutic value in pernicious anaemia and leukemia. Radium. 1914;3:65–71.

    Google Scholar 

  3. News of Science. 1957;Science, 125:18-22.

  4. Laudadio J, Quigley DI, Tubbs R, Wolff DJ. HER2 testing: a review of detection methodologies and their clinical performance. Expert Rev Mol Diagn. 2007;7:53–64.

    Article  PubMed  CAS  Google Scholar 

  5. Brenner AI, Koshy J, Morey J, Lin C, DiPoce J. The bone scan. Semin Nucl Med. 2012;42:11–26.

    Article  PubMed  Google Scholar 

  6. Peters AM. Scintigraphic imaging of renal function. Exp Nephrol. 1998;6:391–7.

    Article  PubMed  CAS  Google Scholar 

  7. Intenzo CM, Dam HQ, Manzone TA, Kim SM. Imaging of the thyroid in benign and malignant disease. Semin Nucl Med. 2012;42:49–61.

    Article  PubMed  Google Scholar 

  8. Galli G, Valenza V. Is there still a role for functional radionuclide study of the liver? Rays. 1997;22:228–48.

    PubMed  CAS  Google Scholar 

  9. Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29:193–207.

    Article  PubMed  Google Scholar 

  10. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2:683–93.

    Article  PubMed  CAS  Google Scholar 

  11. Bethge WA, Sandmaier BM. Targeted cancer therapy using radiolabeled monoclonal antibodies. Technol Cancer Res Treat. 2005;4:393–405.

    PubMed  CAS  Google Scholar 

  12. Howell RW, Goddu SM, Rao DV. Proliferation and the advantage of longer-lived radionuclides in radioimmunotherapy. Med Phys. 1998;25:37–42.

    Article  PubMed  CAS  Google Scholar 

  13. Zalutsky, M.R., Handbook of nuclear chemistry: radiochemistry and radiopharmaceutical chemistry in life sciences. Vol. 4. 2003: Roesch, F., editors. Dordrecht, Netherlands: Kluwer Academic.

  14. Adelstein SJ, Kassis AI, Bodei L, Mariani G. Radiotoxicity of iodine-125 and other Auger-electron-emitting radionuclides: background to therapy. Cancer Biother Radiopharm. 2003;18:301–16.

    Article  PubMed  CAS  Google Scholar 

  15. Chen P, Wang J, Hope K, Jin L, Dick J, Cameron R, Brandwein J, Minden M, Reilly RM. Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells. J Nucl Med. 2006;47:827–36.

    PubMed  CAS  Google Scholar 

  16. Milenic DE, Brechbiel MW. Targeting of radio-isotopes for cancer therapy. Cancer Biol Ther. 2004;3:361–70.

    PubMed  CAS  Google Scholar 

  17. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadephia: Lippincott; 2006.

    Google Scholar 

  18. Couturier O, Supiot S, Degraef-Mougin M, Faivre-Chauvet A, Carlier T, Chatal JF, Davodeau F, Cherel M. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging. 2005;32:601–14.

    Article  PubMed  CAS  Google Scholar 

  19. Nilsson S, Larsen RH, Fossa SD, Balteskard L, Borch KW, Westlin JE, Salberg G, Bruland OS. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res. 2005;11:4451–9.

    Article  PubMed  CAS  Google Scholar 

  20. Liepe K. Alpharadin, a 223Ra-based alpha-particle-emitting pharmaceutical for the treatment of bone metastases in patients with cancer. Curr Opin Investig Drugs. 2009;10:1346–58.

    PubMed  CAS  Google Scholar 

  21. Scheinberg DA, McDevitt MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm. 2011;4:306–20.

    PubMed  CAS  Google Scholar 

  22. van Dongen GA, Visser GW, Lub-de Hooge MN, de Vries EG, Perk LR. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist. 2007;12:1379–89.

    Article  PubMed  Google Scholar 

  23. Juweid ME, Cheson BD. Positron-emission tomography and assessment of cancer therapy. N Engl J Med. 2006;354:496–507.

    Article  PubMed  CAS  Google Scholar 

  24. Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman RE, Wahl R, Paschold JC, Avrill N, Einhorn LH, Suh WW, Samson'O D, Delbekell D, Gorman M, Shields AF. Recommendations on the use of F-18-FDG PET in oncology. J Nucl Med. 2008;49:480–508.

    Article  PubMed  Google Scholar 

  25. Buck AK, Hetzel M, Schirrmeister H, Halter G, Moller P, Kratochwil C, Wahl A, Glatting G, Mottaghy FM, Mattfeldt T, Neumaier B, Reske SN. Clinical relevance of imaging proliferative activity in lung nodules. Eur J Nucl Med Mol Imaging. 2005;32:525–33.

    Article  PubMed  Google Scholar 

  26. Michalski MH, Chen X. Molecular imaging in cancer treatment. Eur J Nucl Med Mol Imaging. 2011;38:358–77.

    Article  PubMed  CAS  Google Scholar 

  27. Blankenberg FG, Strauss HW. Nuclear medicine applications in molecular imaging. J Magn Reson Imaging. 2002;16:352–61.

    Article  PubMed  Google Scholar 

  28. Bouchelouche, K., Choyke, P.L., and Capala, J., Prostate specific membrane antigena target for imaging and therapy with radionuclides. 2010;Discov Med, 9:55-61

  29. Vallabhajosula S, Kuji I, Hamacher KA, Konishi S, Kostakoglu L, Kothari PA, Milowski MI, Nanus DM, Bander NH, Goldsmith SJ. Pharmacokinetics and biodistribution of 111In- and 177Lu-labeled J591 antibody specific for prostate-specific membrane antigen: prediction of 90Y-J591 radiation dosimetry based on 111In or 177Lu? J Nucl Med. 2005;46:634–41.

    PubMed  CAS  Google Scholar 

  30. Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, Bander NH. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol. 2004;22:2522–31.

    Article  PubMed  CAS  Google Scholar 

  31. Miao Z, Levi J, Cheng Z. Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids. 2011;41:1037–47.

    Article  PubMed  CAS  Google Scholar 

  32. Lofblom J, Feldwisch J, Tolmachev V, Carlsson J, Stahl S, Frejd FY. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 2010;584:2670–80.

    Article  PubMed  CAS  Google Scholar 

  33. Nilsson FY, Tolmachev V. Affibody molecules: new protein domains for molecular imaging and targeted tumor therapy. Curr Opin Drug Discov Devel. 2007;10:167–75.

    PubMed  CAS  Google Scholar 

  34. Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsen L. Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther. 2007;7:555–68.

    Article  PubMed  CAS  Google Scholar 

  35. Friedman M, Stahl S. Engineered affinity proteins for tumour-targeting applications. Biotechnol Appl Biochem. 2009;53:1–29.

    Article  PubMed  CAS  Google Scholar 

  36. Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC. Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol. 2008;26:442–9.

    Article  PubMed  CAS  Google Scholar 

  37. Lee JH, Yigit MV, Mazumdar D, Lu Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev. 2010;62:592–605.

    Article  PubMed  CAS  Google Scholar 

  38. Soontornworajit B, Wang Y. Nucleic acid aptamers for clinical diagnosis: cell detection and molecular imaging. Anal Bioanal Chem. 2011;399:1591–9.

    Article  PubMed  CAS  Google Scholar 

  39. Rockey WM, Huang L, Kloepping KC, Baumhover NJ, Giangrande PH, Schultz MK. Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorg Med Chem. 2011;19:4080–90.

    Article  PubMed  CAS  Google Scholar 

  40. Collins CD. PET/CT in oncology: for which tumours is it the reference standard? Cancer Imaging. 2007;7(Spec No A):S77–87.

    Article  PubMed  Google Scholar 

  41. Huo L, Wu ZH, Zhuang HM, Fu Z, Dang YH. Dual time point C-11 acetate PET imaging can potentially distinguish focal nodular hyperplasia from primary hepatocellular carcinoma. Clin Nucl Med. 2009;34:874–7.

    Article  PubMed  Google Scholar 

  42. Grosu AL, Souvatzoglou M, Roper B, Dobritz M, Wiedenmann N, Jacob V, Wester HJ, Reischl G, Machulla HJ, Schwaiger M, Molls M, Piert M. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;69:541–51.

    Article  PubMed  CAS  Google Scholar 

  43. Kuwert T, Probst-Cousin S, Woesler B, Morgenroth C, Lerch H, Matheja P, Palkovic S, Schafers M, Wassmann H, Gullotta F, Schober O. Iodine-123-alpha-methyl tyrosine in gliomas: correlation with cellular density and proliferative activity. J Nucl Med. 1997;38:1551–5.

    PubMed  CAS  Google Scholar 

  44. Yap JT, Carney JPJ, Hall NC, Townsend DW. Image-guided cancer therapy using PET/CT. Cancer J. 2004;10:221–33.

    Article  PubMed  Google Scholar 

  45. Schinagl DA, Hoffmann AL, Vogel WV, van Dalen JA, Verstappen SM, Oyen WJ, Kaanders JH. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer? Radiother Oncol. 2009;91:95–100.

    Article  PubMed  Google Scholar 

  46. Equipment News. 1957;Science, 125:34.

  47. Pectasides D, Gaglia A, Arapantoni-Dadioti P, Bobota A, Valavanis C, Kostopoulou V, Mylonakis N, Karabelis A, Pectasides M, Economopoulos T. HER-2/neu status of primary breast cancer and corresponding metastatic sites in patients with advanced breast cancer treated with trastuzumab-based therapy. Anticancer Res. 2006;26:647–53.

    PubMed  CAS  Google Scholar 

  48. Lawrence YR, Dicker AP. Hypoxia in prostate cancer: observation to intervention. Lancet Oncol. 2008;9:308–9.

    Article  PubMed  Google Scholar 

  49. Rajendran JG, Schwartz DL, O'Sullivan J, Peterson LM, Ng P, Scharnhorst J, Grierson JR, Krohn KA. Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res. 2006;12:5435–41.

    Article  PubMed  CAS  Google Scholar 

  50. Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, Wester HJ, Beck R, McEwan AJ, Wiebe LI, Schwaiger M. Hypoxia-specific tumor imaging with 18 F-fluoroazomycin arabinoside. J Nucl Med. 2005;46:106–13.

    PubMed  Google Scholar 

  51. Reischl G, Dorow DS, Cullinane C, Katsifis A, Roselt P, Binns D, Hicks RJ. Imaging of tumor hypoxia with [124I]IAZA in comparison with [18 F]FMISO and [18 F]FAZA—first small animal PET results. J Pharm Pharm Sci. 2007;10:203–11.

    PubMed  CAS  Google Scholar 

  52. Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther. 2006;5:2624–33.

    Article  PubMed  CAS  Google Scholar 

  53. Bach-Gansmo T, Danielsson R, Saracco A, Wilczek B, Bogsrud TV, Fangberget A, Tangerud A, Tobin D. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. J Nucl Med. 2006;47:1434–9.

    PubMed  CAS  Google Scholar 

  54. Govindan SV, Griffiths GL, Hansen HJ, Horak ID, Goldenberg DM. Cancer therapy with radiolabeled and drug/toxin-conjugated antibodies. Technol Cancer Res Treat. 2005;4:375–91.

    PubMed  CAS  Google Scholar 

  55. Knox SJ, Meredith RF. Clinical radioimmunotherapy. Semin Radiat Oncol. 2000;10:73–93.

    Article  PubMed  CAS  Google Scholar 

  56. Davis TA, Kaminski MS, Leonard JP, Hsu FJ, Wilkinson M, Zelenetz A, Wahl RL, Kroll S, Coleman M, Goris M, Levy R, Knox SJ. The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res. 2004;10:7792–8.

    Article  PubMed  CAS  Google Scholar 

  57. Kaminski MS, Zelenetz AD, Press OW, Saleh M, Leonard J, Fehrenbacher L, Lister TA, Stagg RJ, Tidmarsh GF, Kroll S, Wahl RL, Knox SJ, Vose JM. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin's lymphomas. J Clin Oncol. 2001;19:3918–28.

    PubMed  CAS  Google Scholar 

  58. Oyen WJ, Bodei L, Giammarile F, Maecke HR, Tennvall J, Luster M, Brans B. Targeted therapy in nuclear medicine—current status and future prospects. Ann Oncol. 2007;18:1782–92.

    Article  PubMed  CAS  Google Scholar 

  59. Parker, C., Heinrich, D., J.M., O.S., and al., e. Overall survival benefit of radium-223 chloride (Alpharadin) in the treatment of patients with symptomatic bone metastases in castration-resistant prostate cancer (CRPC): a phase III randomized trial (ALSYMPCA). in European Multidisciplinary Cancer Congress. 2011. Stockholm, Sweden.

Download references

Acknowledgments

The authors thank Mr. Tomasz Marek for the preparation of the figures. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services nor does mention of trade names, commercial products, or organization imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Capala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer-Marek, G., Capala, J. The role of nuclear medicine in modern therapy of cancer. Tumor Biol. 33, 629–640 (2012). https://doi.org/10.1007/s13277-012-0373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0373-8

Keywords

Navigation