Skip to main content
Log in

Environmental exposures and chronic obstructive pulmonary disease

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. The development and exacerbation of COPD are influenced by environmental factors. Cigarette smoking is a major risk factor for COPD, and environmental tobacco smoking also contributes to its development. Occupational exposure to vapor, dust, gas, and fumes are other important risk factors for COPD. Outdoor air pollution increases COPD-related hospital admissions and is an important factor for disease exacerbation and mortality. Indoor air pollution due to biomass fuel use is also a risk factor for COPD, particularly for women in developing countries. These factors should be studied for public health and prevention of COPD; identification of potential exposure risks will aid our efforts to stop the progression of COPD. The study of environmental factors is important to epidemiologists, toxicologists, and clinicians, and a multidisciplinary approach is essential for finding key factors and understanding mechanistic disease pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vogelmeier, C. F. et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Resp Crit Care 195:557–582 (2017).

    Article  Google Scholar 

  2. Forouzanfar, M. H. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 388:1659–1724 (2016).

    Article  Google Scholar 

  3. Kim, W. J. & Lee, S. D. Candidate genes for COPD: current evidence and research. Int J Chron Obstruct Pulmon Dis 10:2249–2255 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Hong, Y. et al. Influence of Environmental Exposures on Patients with Chronic Obstructive Pulmonary Disease in Korea. Tuberc Respir Dis 76:226–232 (2014).

    Article  Google Scholar 

  5. Postma, D. S., Bush, A. & van den Berge, M. Risk factors and early origins of chronic obstructive pulmonary disease. The Lancet 385:899–909 (2015).

    Article  Google Scholar 

  6. Lange, P. et al. Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. New Engl J Med 373:111–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Kirkham, P. A. & Barnes, P. J. Oxidative stress in COPD. Chest 144:266–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Nurwidya, F., Damayanti, T. & Yunus, F. The Role of Innate and Adaptive Immune Cells in the Immunopathogenesis of Chronic Obstructive Pulmonary Disease. Tuberc Respir Dis 79:5–13 (2016).

    Article  Google Scholar 

  9. Mizumura, K. et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest 124:3987–4003 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kang, M.-J. & Shadel, G. S. A Mitochondrial Perspective of Chronic Obstructive Pulmonary Disease Pathogenesis. Tuberc Respir Dis 79:207–213 (2016).

    Article  Google Scholar 

  11. Bagdonas, E., Raudoniute, J., Bruzauskaite, I. & Aldonyte, R. Novel aspects of pathogenesis and regeneration mechanisms in COPD. Int J Chron Obstruct Pulmon Dis 10:995–1013 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Yin, P. et al. Passive smoking exposure and risk of COPD among adults in China: the Guangzhou Biobank Cohort Study. The Lancet 370:751–757 (2007).

    Article  CAS  Google Scholar 

  13. Salvi, S. S. & Barnes, P. J. Chronic obstructive pulmonary disease in non-smokers. The Lancet 374:733–743 (2009).

    Article  Google Scholar 

  14. Eisner, M. D. et al. An Official American Thoracic Society Public Policy Statement: Novel Risk Factors and the Global Burden of Chronic Obstructive Pulmonary Disease. Am J Resp Crit Care 182:693–718 (2010).

    Article  Google Scholar 

  15. Kraïm-Leleu, M., Lesage, F.-X., Drame, M., Lebargy, F. & Deschamps, F. Occupational Risk Factors for COPD: A Case-Control Study. PloS One 11:e0158719 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marchetti, N. et al. Association between Occupational Exposure and Lung Function, Respiratory Symptoms, and High-Resolution Computed Tomography Imaging in COPDGene. Am J Resp Crit Care 190:756–762 (2014).

    Article  Google Scholar 

  17. Paulin, L. M. et al. Occupational Exposures Are Associated with Worse Morbidity in Patients with Chronic Obstructive Pulmonary Disease. Am J Resp Crit Care 191:557–565 (2015).

    Article  Google Scholar 

  18. Liu, X., Lessner, L. & Carpenter, D. O. Association between Residential Proximity to Fuel-Fired Power Plants and Hospitalization Rate for Respiratory Diseases. Environ Health Persp 120:807–810 (2012).

    Article  CAS  Google Scholar 

  19. Hong, Y. et al. Methodology of an Observational Cohort Study for Subjects with Chronic Obstructive Pulmonary Disease in Dusty Areas Near Cement Plants. J Pulm Respir Med 4:169 (2014).

    Google Scholar 

  20. Atkinson, R. W., Kang, S., Anderson, H. R., Mills, I. C. & Walton, H. A. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax 69:660–665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gan, W. Q., FitzGerald, J. M., Carlsten, C., Sadatsafavi, M. & Brauer, M. Associations of Ambient Air Pollution with Chronic Obstructive Pulmonary Disease Hospitalization and Mortality. Am J Resp Crit Care 187:721–727 (2013).

    Article  Google Scholar 

  22. Berend, N. Contribution of air pollution to COPD and small airway dysfunction. Respirology 21:237–244 (2016).

    Article  PubMed  Google Scholar 

  23. Schikowski, T. et al. Association of ambient air pollution with the prevalence and incidence of COPD. Eur Respir J 44:614–626 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Song, Q., Christiani, D., Wang, X. & Ren, J. The Global Contribution of Outdoor Air Pollution to the Incidence, Prevalence, Mortality and Hospital Admission for Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Int J Env Res Pub He 11:11822 (2014).

    Article  Google Scholar 

  25. Son, J.-Y., Lee, J.-T., Kim, K.-H., Jung, K. & Bell, M. L. Characterization of Fine Particulate Matter and Associations between Particulate Chemical Constituents and Mortality in Seoul, Korea. Environ Health Persp 120:872–878 (2012).

    Article  Google Scholar 

  26. Park, J., Lim, M. N., Hong, Y. & Kim, W. J. The Influence of Asian Dust, Haze, Mist, and Fog on Hospital Visits for Airway Diseases. Tuberc Respir Dis 78:326–335 (2015).

    Article  Google Scholar 

  27. Martin, K. L., Hanigan, I. C., Morgan, G. G., Henderson, S. B. & Johnston, F. H. Air pollution from bushfires and their association with hospital admissions in Sydney, Newcastle and Wollongong, Australia 1994-2007. Aust N Z J Public Health 37:238–243 (2013).

    Article  PubMed  Google Scholar 

  28. Hansel, N. N. et al. In-Home Air Pollution Is Linked to Respiratory Morbidity in Former Smokers with Chronic Obstructive Pulmonary Disease. Am J Resp Crit Care 187:1085–1090 (2013).

    Article  Google Scholar 

  29. Liu, S. et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax 62:889–897 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Po, J. Y. T., FitzGerald, J. M. & Carlsten, C. Respiratory disease associated with solid biomass fuel exposure in rural women and children: systematic review and meta-analysis. Thorax 66:232–239 (2011).

    Article  PubMed  Google Scholar 

  31. Camp, P. G. et al. COPD phenotypes in biomass smoke -versus tobacco smoke -exposed Mexican women. Eur Respir J 43:725–734 (2014).

    Article  PubMed  Google Scholar 

  32. Ramirez-Venegas, A. et al. FEV1 Decline in Patients with Chronic Obstructive Pulmonary Disease Associated with Biomass Exposure. Am J Resp Crit Care 190:996–1002 (2014).

    Article  Google Scholar 

  33. Naeher, L. P. et al. Woodsmoke Health Effects: A Review. Inhal Toxicol 19:67–106 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Rokadia, H. K. & Agarwal, S. Serum Heavy Metals and Obstructive Lung Disease: Results From the National Health and Nutrition Examination Survey. Chest 143:388–397 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Leem, A. et al. Relationship between blood levels of heavy metals and lung function based on the Korean National Health and Nutrition Examination Survey IVV. Int J COPD 10:1559–1570 (2015).

    Google Scholar 

  36. Turner, M. C. et al. Radon and COPD mortality in the American Cancer Society Cohort. Eur Respir J 39:1113–1119 (2012).

    Article  PubMed  Google Scholar 

  37. Joubert, B. R. et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am J Hum Genet 98:680–696 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, M. K., Hong, Y., Kim, S.-Y., London, S. J. & Kim, W. J. DNA methylation and smoking in Korean adults: epigenome-wide association study. Clin Epigenetics 8: 103 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chi, G. C. et al. Long-term outdoor air pollution and DNA methylation in circulating monocytes: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health 15:119 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sakao, S. & Tatsumi, K. The importance of epigenetics in the development of chronic obstructive pulmonary disease. Respirology 16:1056–1063 (2011).

    Article  PubMed  Google Scholar 

  41. Busch, R. et al. Differential DNA methylation marks and gene comethylation of COPD in African-Americans with COPD exacerbations. Resp Res 17:143 (2016).

    Article  Google Scholar 

  42. Kang, M.-J. et al. Suppression of NLRX1 in chronic obstructive pulmonary disease. J Clin Invest 125:2458–2462 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang, L., Joad, J. P., Zhong, C. & Pinkerton, K. E. Effects of environmental tobacco smoke exposure on pulmonary immune response in infant monkeys. J Allergy Clin Immun 122:400-406.e405 (2008).

  44. van der Toorn, M. et al. Critical role of aldehydes in cigarette smoke-induced acute airway inflammation. Resp Res 14:45 (2013).

    Article  Google Scholar 

  45. Cho, Y. et al. MicroRNA response of inhalation exposure to hexanal in lung tissues from Fischer 344 rats. Environ Toxicol 31:1909–1921 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, H. et al. Blockade of RAGE ameliorates elastaseinduced emphysema development and progression via RAGE-DAMP signaling. FASEB J 31:2076–2089 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Kirschvink, N. et al. Airway inflammation in cadmiumexposed rats is associated with pulmonary oxidative stress and emphysema. Free Radical Res 40:241–250 (2006).

    Article  CAS  Google Scholar 

  48. Ye, J. et al. Development of a Novel Simulation Reactor for Chronic Exposure to Atmospheric Particulate Matter. Sci Rep-UK 7:42317 (2017).

    Article  CAS  Google Scholar 

  49. Lee, K.-H., Lee, C.-H., Jeong, J., Jang, A.-H. & Yoo, C.-G. Neutrophil Elastase Differentially Regulates Interleukin 8 (IL-8) and Vascular Endothelial Growth Factor (VEGF) Production by Cigarette Smoke Extract. J Biol Chem 290:28438–28445 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kumar, R. K. et al. Differential injurious effects of ambient and traffic-derived particulate matter on airway epithelial cells. Respirology 20:73–79 (2015).

    Article  PubMed  Google Scholar 

  51. Li, J. et al. TRPV4-Mediated Calcium Influx into Human Bronchial Epithelia upon Exposure to Diesel Exhaust Particles. Environ Health Persp 119:784–793 (2011).

    Article  CAS  Google Scholar 

  52. Lâg, M. et al. Cadmium-induced inflammatory responses in cells relevant for lung toxicity: Expression and release of cytokines in fibroblasts, epithelial cells and macrophages. Toxicol Lett 193:252–260 (2010).

    Article  PubMed  Google Scholar 

  53. Pezzulo, A. A. et al. The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am J Physiol-Lung C 300:L25–L31 (2011).

    Article  CAS  Google Scholar 

  54. Huh, D. et al. Reconstituting Organ-Level Lung Functions on a Chip. Science 328:1662–1668 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Schilders, K. A. A. et al. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices. Resp Res 17:44 (2016).

    Article  Google Scholar 

  56. Wild, C. P. The exposome: from concept to utility. Int J Epidemiol 41:24–32 (2012).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Youl Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W.J., Lee, C.Y. Environmental exposures and chronic obstructive pulmonary disease. Mol. Cell. Toxicol. 13, 251–255 (2017). https://doi.org/10.1007/s13273-017-0027-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-017-0027-4

Key words

Navigation