Skip to main content
Log in

Anti-diabetic effects of natural products an overview of therapeutic strategies

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Diabetes mellitus, a large part of metabolic disorder, is characterized by persistent hyperglycemia. The number of people suffering from diabetes is rapidly increasing worldwide, and the disease is often accompanied by severe complications such as heart disease, diabetic kidney failure, and retinal disease due to the high blood glucose levels over a long period of time. Comprehensive diabetic management is important, including efforts to lower the blood glucose level and body weight as well as to prevent insulin resistance. Although various prescriptions for diabetes have been used as therapeutic medicines, many researchers have long studied this disease in an effort to find new effective substances derived from natural products without side effects or toxicity. In the research on natural product, plants can have toxic or insufficient effects and unexplained outcomes, but the possibilities are unlimited. Here, we explain medicinal plants with anti-diabetic effects in a comprehensive manner, focusing on hormonal regulation and metabolic regulation, and describe active components and natural products based on the vast amount of research and on clinical trials. This review suggests that medicinal plants can used to treat diabetic mellitus through hormonal regulation and metabolic regulation as a therapeutic medication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shaw, J. E., Sicree, R. A. & Zimmet, P. Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. McNaughton, D. ‘Diabesity’ down under: overweight and obesity as cultural signifiers for type 2 diabetes mellitus. Critical Public Health 23:274–288 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schuit, F. C., Huypens, P., Heimberg, H. & Pipeleers, D. G. Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes 50:1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Leturque, A., Brot-Laroche, E. & Le Gall, M. GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am J Physiol Endocrinol Metab 296:E985–992 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. MacDonald, P. E., Joseph, J. W. & Rorsman, P. Glucosesensing mechanisms in pancreatic beta-cells. Philos Trans R Soc Lond B Biol Sci 360:2211–2225 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Drucker, D. J. et al. Incretin-based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits. Diabetes Care 33:428–433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bailey, C. J. & Day, C. Metformin: its botanical background. Practical Diabetes Int 21:115–117 (2004).

    Article  Google Scholar 

  8. Patel, S. S. & Udayabanu, M. Effect of natural products on diabetes associated neurological disorders. Rev Neurosci, doi:10.1515/revneuro-2016–0038 (2016).

    Google Scholar 

  9. Dastagir, G. & Rizvi, M. A. Review - Glycyrrhiza glabra L. (Liquorice). Pak J Pharm Sci 29:1727–1733 (2016).

    PubMed  Google Scholar 

  10. Arulselvan, P. et al. Antidiabetic therapeutics from natural source: A systematic review. Biomed Prev Nutr 4:607–617 (2014).

    Article  Google Scholar 

  11. Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Wu, T., Rayner, C. K., Jones, K. & Horowitz, M. Dietary effects on incretin hormone secretion. Vitam Horm 84:81–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, W. & Egan, J. M. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 60:470–512 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joo, E. et al. Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High Fat Diet-Fed Mice. Diabetes, db160758 (2017).

    Google Scholar 

  15. Kim, K.-H. & Jang, H.-J. Development of GLP-1 secretagogue using microarray in enteroendocrine L cells. BioChip J, 10:272–276.

  16. Kim, K. S. & Jang, H. J. Medicinal Plants Qua Glucagon-Like Peptide-1 Secretagogue via Intestinal Nutrient Sensors. eCAM 2015:71742 (2015).

    Google Scholar 

  17. Wang, X., Liu, H., Chen, J., Li, Y. & Qu, S. Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1. Int J Endocrinol 2015:651757 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Jang, H. J. et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A 104:15069–15074 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kokrashvili, Z., Mosinger, B. & Margolskee, R. F. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J Clin Nutr 90:822s–825s (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kokrashvili, Z. et al. Endocrine taste cells. Br J Nutr 111 Suppl 1:S23–29 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ohtsu, Y. et al. Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells. Mol Cell Endocrinol 394:70–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Phuwamongkolwiwat, P., Hira, T. & Hara, H. A nondigestible saccharide, fructooligosaccharide, increases the promotive effect of a flavonoid, alpha-glucosyl-isoquercitrin, on glucagon-like peptide 1 (GLP-1) secretion in rat intestine and enteroendocrine cells. Molecular Nutrition & Food Research 58:1581–1584 (2014).

    Article  CAS  Google Scholar 

  23. Cho, C.-W. et al. Chemical composition characteristics of Korean straight ginseng products. Journal of Ethnic Foods 1:24–28 (2014).

    Article  Google Scholar 

  24. Luo, J. Z. & Luo, L. Ginseng on hyperglycemia: effects and mechanisms. eCAM 6:423–427 (2009).

    PubMed  Google Scholar 

  25. Lee, S. M. et al. Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. J Ginseng Res 39:384–391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, C. et al. Increased glucagon-like peptide-1 secretion may be involved in antidiabetic effects of ginsenosides. The Journal of Endocrinology 217:185–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, K. S. et al. The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice. Sci Rep 5:18325 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakamoto, E. et al. Ingestion of a moderate high-sucrose diet results in glucose intolerance with reduced liver glucokinase activity and impaired glucagon-like peptide-1 secretion. J Diabetes Investig 3:432–440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jaggupilli, A., Howard, R., Upadhyaya, J. D., Bhullar, R. P. & Chelikani, P. Bitter taste receptors: Novel insights into the biochemistry and pharmacology. Int J Biochem Cell Biol 77:184–196 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Shaik, F. A. et al. Bitter taste receptors: Extraoral roles in pathophysiology. Int J Biochem Cell Biol 77:197–204 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Pydi, S. P., Bhullar, R. P. & Chelikani, P. Constitutive activity of bitter taste receptors (T2Rs). Adv Pharmacol 70:303–326 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100:703–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Wu, S. V. et al. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci U S A 99:2392–2397 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, K. S., Egan, J. M. & Jang, H. J. Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia 57:2117–2125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rozengurt, N. et al. Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. American Journal of Physiology. Gastrointestinal and Liver Physiology 291:G792–802 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Clark, A. A., Liggett, S. B. & Munger, S. D. Extraoral bitter taste receptors as mediators of off-target drug effects. Faseb J 26:4827–4831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deshpande, D. A. et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med 16:1299–1304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liggett, S. B. Bitter taste receptors on airway smooth muscle as targets for novel bronchodilators. Expert Opin Ther Targets 17:721–731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park, J. et al. GLP-1 secretion is stimulated by 1,10-phenanthroline via colocalized T2R5 signal transduction in human enteroendocrine L cell. Biochemical and Biophysical Research Communications 468:306–311 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Dandawate, P. R., Subramaniam, D., Padhye, S. B. & Anant, S. Bitter melon: a panacea for inflammation and cancer. Chinese Journal of Natural Medicines 14:81–100 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hussan, F., Teoh, S. L., Muhamad, N., Mazlan, M. & Latiff, A. A. Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-beta expression. J Wound Care 23:400, 402, 404–407 (2014).

    Article  Google Scholar 

  42. Raina, K., Kumar, D. & Agarwal, R. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy. Semin Cancer Biol 40–41:116–129 (2016).

    Article  PubMed  CAS  Google Scholar 

  43. Huang, T. N., Lu, K. N., Pai, Y. P., Chin, H. & Huang, C. J. Role of GLP-1 in the Hypoglycemic Effects of Wild Bitter Gourd. eCAM 2013:625892 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. Shin, M. H. et al. Hexane Fractions of Bupleurum falcatum L. Stimulates Glucagon-Like Peptide-1 Secretion through G beta gamma-Mediated Pathway. eCAM 2014:982165 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Suh, H. W. et al. A bitter herbal medicine Gentiana scabra root extract stimulates glucagon-like peptide-1 secretion and regulates blood glucose in db/db mouse. Journal of Ethnopharmacology 172:219–226 (2015).

    Article  PubMed  Google Scholar 

  46. Mennella, I. et al. Microencapsulated bitter compounds (from Gentiana lutea) reduce daily energy intakes in humans. Br J Nutr 1–10 (2016).

    Google Scholar 

  47. Abd El-Wahab, A. E., Ghareeb, D. A., Sarhan, E. E., Abu-Serie, M. M. & El Demellawy, M. A. In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC Complement Altern Med 13:218 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pang, B. et al. Application of berberine on treating type 2 diabetes mellitus. International Journal of Endocrinology 2015:905749 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chang, W., Chen, L. & Hatch, G. M. Berberine as a therapy for type 2 diabetes and its complications: From mechanism of action to clinical studies. Biochem Cell Biol 93:479–486 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Cui, G. et al. Berberine differentially modulates the activities of ERK, p38 MAPK, and JNK to suppress Th17 and Th1 T cell differentiation in type 1 diabetic mice. J Biol Chem 284:28420–28429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, X. et al. Protective Effects of Berberine on Renal Injury in Streptozotocin (STZ)-Induced Diabetic Mice. Int J Mol Sci 17:1327 (2016).

    Article  PubMed Central  Google Scholar 

  52. Imenshahidi, M. & Hosseinzadeh, H. Berberis Vulgaris and Berberine: An Update Review. Phytother Res 30:1745–1764 (2016).

    Article  PubMed  Google Scholar 

  53. Yu, Y. et al. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways. Biochem Pharmacol 97:173–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Yu, Y. et al. Modulation of glucagon-like peptide-1 release by berberine: in vivo and in vitro studies. Biochem Pharmacol 79:1000–1006 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, K.-H. et al. Aqueous extracts of Anemarrhena asphodeloides stimulate glucagon-like pepetide-1 secretion in enteroendocrine NCI-H716 cells. BioChip J 7:188–193 (2013).

    Article  CAS  Google Scholar 

  56. Kim, K.-S. et al. Transcriptomic analysis of the bitter taste receptor-mediated glucagon-like peptide-1 stimulation effect of quinine. BioChip J 7:386–392 (2013).

    Article  CAS  Google Scholar 

  57. Choi, E.-K. et al. Hexane fraction of Citrus aurantium L. stimulates glucagon-like peptide-1 (GLP-1) secretion via membrane depolarization in NCI-H716 cells. BioChip J 6:41–47 (2012).

    Article  CAS  Google Scholar 

  58. Lauffer, L. M., Iakoubov, R. & Brubaker, P. L. GPR119 is essential for oleoylethanolamide-induced glucagonlike peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes 58:1058–1066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Park, E. Y. et al. Angelica dahurica Extracts Improve Glucose Tolerance through the Activation of GPR119. PloS One 11:e0158796 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Fujii, Y., Osaki, N., Hase, T. & Shimotoyodome, A. Ingestion of coffee polyphenols increases postprandial release of the active glucagon-like peptide-1 (GLP-1(7–36)) amide in C57BL/6J mice. J Nutr Sci 4:e9 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kim, K., Park, M., Lee, Y. M., Rhyu, M. R. & Kim, H. Y. Ginsenoside metabolite compound K stimulates glucagon-like peptide-1 secretion in NCI-H716 cells via bile acid receptor activation. Arch Pharm Res 37:1193–1200 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Stenblom, E. L., Egecioglu, E., Landin-Olsson, M. & Erlanson-Albertsson, C. Consumption of thylakoidrich spinach extract reduces hunger, increases satiety and reduces cravings for palatable food in overweight women. Appetite 91:209–219 (2015).

    Article  PubMed  Google Scholar 

  63. Stenblom, E. L. et al. Supplementation by thylakoids to a high carbohydrate meal decreases feelings of hunger, elevates CCK levels and prevents postprandial hypoglycaemia in overweight women. Appetite 68:118–123 (2013).

    Article  PubMed  Google Scholar 

  64. Kohnke, R. et al. Thylakoids promote release of the satiety hormone cholecystokinin while reducing insulin in healthy humans. Scandinavian Journal of Gastroenterology 44:712–719 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Nagamine, R. et al. Dietary sweet potato (Ipomoea batatas L.) leaf extract attenuates hyperglycaemia by enhancing the secretion of glucagon-like peptide-1 (GLP-1). Food Funct 5:2309–2316 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Liu, Y. X. et al. Effects and molecular mechanisms of the antidiabetic fraction of Acorus calamus L. on GLP-1 expression and secretion in vivo and in vitro. J Ethnopharmacol 166:168–175 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, S. H., Chang, Y. H. & Chiang, M. T. Chitosan reduces gluconeogenesis and increases glucose uptake in skeletal muscle in streptozotocin-induced diabetic rats. J Agric Food Chem 58:5795–5800 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Liu, S. H., Huang, Y. W., Wu, C. T., Chiu, C. Y. & Chiang, M. T. Low molecular weight chitosan accelerates glucagon-like peptide-1 secretion in human intestinal endocrine cells via a p38-dependent pathway. J Agric Food Chem 61:4855–4861 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Kim, K.-S. et al. The effects of complex herbal medicine composed of Cornus fructus, Dioscoreae rhizoma, Aurantii fructus, and Mori folium in obese type-2 diabetes mice model. Orent Pharm Exp Med 13:69–75 (2013).

    Article  Google Scholar 

  70. Lee, I. S. et al. Antihyperglycemic and Antiobesity Effects of JAL2 on db/db Mice. eCAM 2016:6828514 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Fu, Z., Gilbert, E. R. & Liu, D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 9:25–53 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kojima, I. & Nakagawa, Y. The Role of the Sweet Taste Receptor in Enteroendocrine Cells and Pancreatic beta-Cells. Diabetes Metab J 35:451–457 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nakagawa, Y. et al. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PloS One 4:e5106 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Lemaire, K. & Schuit, F. Integrating insulin secretion and ER stress in pancreatic beta-cells. Nat Cell Biol 14:979–981 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Laffitte, A., Neiers, F. & Briand, L. Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr Opin Clin Nutr Metab Care 17:379–385 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakagawa, Y. et al. Multimodal function of the sweet taste receptor expressed in pancreatic beta-cells: generation of diverse patterns of intracellular signals by sweet agonists. Endocr J 60:1191–1206 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Cui, J. et al. Insulin-secretagogue activity of eleven plant extracts and twelve pure compounds isolated from Aralia taibaiensis. Life Sci 92:131–136 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Cui, J. et al. Insulinotropic effect of Chikusetsu saponin IVa in diabetic rats and pancreatic beta-cells. J Ethnopharmacol 164:334–339 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Huang, C. F. et al. Extract of lotus leaf (Nelumbo nucifera) and its active constituent catechin with insulin secretagogue activity. J Agric Food Chem 59:1087–1094 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Zheng, J. et al. Corydalis edulis Maxim. Promotes Insulin Secretion via the Activation of Protein Kinase Cs (PKCs) in Mice and Pancreatic beta Cells. Scientific Reports 7:40454 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schmidt, S. et al. Extracts from Leonurus sibiricus L. increase insulin secretion and proliferation of rat INS-1E insulinoma cells. J Ethnopharmacol 150:85–94 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Vaidya, H. B., Ahmed, A. A., Goyal, R. K. & Cheema, S. K. Glycogen phosphorylase-a is a common target for anti-diabetic effect of iridoid and secoiridoid glycosides. J Pharm Pharm Sci 16:530–540 (2013).

    Article  PubMed  Google Scholar 

  83. Pitschmann, A. et al. Quantitation of phenylpropanoids and iridoids in insulin-sensitising extracts of Leonurus sibiricus L. (Lamiaceae). Phytochem Anal 27:23–31 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Kittl, M. et al. Quercetin Stimulates Insulin Secretion and Reduces the Viability of Rat INS-1 Beta-Cells. Cell Physiol Biochem 39:278–293 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Latha, M., Pari, L., Sitasawad, S. & Bhonde, R. Insulin-secretagogue activity and cytoprotective role of the traditional antidiabetic plant Scoparia dulcis (Sweet Broomweed). Life Sci 75:2003–2014 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Ramadan, B. K., Schaalan, M. F. & Tolba, A. M. Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan induced diabetic rats. BMC Complement Altern Med 17:37 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Aljohi, A., Matou-Nasri, S. & Ahmed, N. Antiglycation and Antioxidant Properties of Momordica charantia. PloS One 11:e0159985 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Sitasawad, S. L., Shewade, Y. & Bhonde, R. Role of bittergourd fruit juice in stz-induced diabetic state in vivo and in vitro. J Ethnopharmacol 73:71–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Rathi, S. S., Grover, J. K., Vikrant, V. & Biswas, N. R. Prevention of experimental diabetic cataract by Indian Ayurvedic plant extracts. Phytother Res 16:774–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. El Awdan, S. A. et al. Hypoglycemic activity of Gleditsia caspica extract and its saponin-containing fraction in streptozotocin-induced diabetic rats. Z Naturforsch C 71:253–260 (2016).

    Article  PubMed  CAS  Google Scholar 

  91. Keller, A. C. et al. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine 19:32–37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xiang, L., Huang, X., Chen, L., Rao, P. & Ke, L. The reparative effects of Momordica Charantia Linn. extract on HIT-T15 pancreatic beta-cells. Asia Pac J Clin Nutr 16 Suppl 1:249–252 (2007).

    PubMed  Google Scholar 

  93. Yousaf, S., Hussain, A., Rehman, S., Aslam, M. S. & Abbas, Z. Hypoglycemic and hypolipidemic effects of Lactobacillus fermentum, fruit extracts of Syzygium cumini and Momordica charantia on diabetes induced mice. Pak J Pharm Sci 29:1535–1540 (2016).

    PubMed  Google Scholar 

  94. Harinantenaina, L. et al. Momordica charantia constituents and antidiabetic screening of the isolated major compounds. Chem Pharm Bull (Tokyo) 54:1017–1021 (2006).

    Article  CAS  Google Scholar 

  95. Raman, A. & Lau, C. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine 2:349–362 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Krawinkel, M. B. & Keding, G. B. Bitter gourd (Momordica Charantia): A dietary approach to hyperglycemia. Nutr Rev 64:331–337 (2006).

    Article  PubMed  Google Scholar 

  97. Patel, R. et al. Analgesic and antipyretic activities of Momordica charantia Linn. fruits. J Adv Pharm Technol Res 1:415–418 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hazarika, R., Parida, P., Neog, B. & Yadav, R. N. Binding Energy calculation of GSK-3 protein of Human against some anti-diabetic compounds of Momordica charantia linn (Bitter melon). Bioinformation 8:251–254 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang, H. Y. et al. Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice. Food Chem Toxicol 69:347–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Miura, T. et al. Impairment of insulin-stimulated GLUT4 translocation in skeletal muscle and adipose tissue in the Tsumura Suzuki obese diabetic mouse: a new genetic animal model of type 2 diabetes. Eur J Endocrinol 145:785–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Kim, J. H., Pan, J. H., Cho, H. T. & Kim, Y. J. Black Ginseng Extract Counteracts Streptozotocin-Induced Diabetes in Mice. PloS One 11:e0146843 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Seo, Y. S. et al. Black ginseng extract exerts anti-hyperglycemic effect via modulation of glucose metabolism in liver and muscle. J Ethnopharmacol 190:231–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Luo, J. Z. & Luo, L. American ginseng stimulates insulin production and prevents apoptosis through regulation of uncoupling protein-2 in cultured beta cells. eCAM 3:365–372 (2006).

    PubMed  PubMed Central  Google Scholar 

  104. Yoo, K. M., Lee, C., Lo, Y. M. & Moon, B. The hypoglycemic effects of American red ginseng (Panax quinquefolius L.) on a diabetic mouse model. J Food Sci 77:H147–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Oshima, Y., Sato, K. & Hikino, H. Isolation and hypoglycemic activity of quinquefolans A, B, and C, glycans of Panax quinquefolium roots. J Nat Prod 50:188–190 (1987).

    Article  CAS  PubMed  Google Scholar 

  106. Yang, H. J. et al. Anti-Diabetic Activities of Gastrodia elata Blume Water Extracts Are Mediated Mainly by Potentiating Glucose-Stimulated Insulin Secretion and Increasing beta-Cell Mass in Non-Obese Type 2 Diabetic Animals. Nutrients 8:161 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Tanaka, S., Kanazawa, I., Notsu, M. & Sugimoto, T. Visceral fat obesity increases serum DPP-4 levels in men with type 2 diabetes mellitus. Diabetes Res Clin Pract 116:1–6 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Aso, Y. et al. Serum level of soluble CD26/dipeptidyl peptidase-4 (DPP-4) predicts the response to sitagliptin, a DPP-4 inhibitor, in patients with type 2 diabetes controlled inadequately by metformin and/or sulfonylurea. Transl Res 159:25–31 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Lee, S. A. et al. CD26/DPP4 levels in peripheral blood and T cells in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 98:2553–2561 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Wu, S., Hopper, I., Skiba, M. & Krum, H. Dipeptidyl peptidase-4 inhibitors and cardiovascular outcomes: meta-analysis of randomized clinical trials with 55,141 participants. Cardiovasc Ther 32:147–158 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Elgendy, I. Y. et al. Cardiovascular Safety of Dipeptidyl-Peptidase IV Inhibitors: A Meta-Analysis of Placebo-Controlled Randomized Trials. Am J Cardiovasc Drugs, doi:10.1007/s40256–016-0208-x (2016).

    Google Scholar 

  112. Ou, H. T., Chang, K. C., Li, C. Y. & Wu, J. S. Comparative cardiovascular risks of dipeptidyl peptidase-4 inhibitors with other 2nd and 3rd line antidiabetic drugs in patients with type 2 diabetes. Br J Clin Pharmacol, doi:10.1111/bcp.13241 (2017).

    Google Scholar 

  113. El-Ouaghlidi, A. et al. The dipeptidyl peptidase 4 inhibitor vildagliptin does not accentuate glibenclamideinduced hypoglycemia but reduces glucose-induced glucagon-like peptide 1 and gastric inhibitory polypeptide secretion. J Clin Endocrinol Metab 92:4165–4171 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Shi, S., Koya, D. & Kanasaki, K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. Fibrogenesis Tissue Repair 9:1 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Alam, M. A., Chowdhury, M. R., Jain, P., Sagor, M. A. & Reza, H. M. DPP-4 inhibitor sitagliptin prevents inflammation and oxidative stress of heart and kidney in two kidney and one clip (2K1C) rats. Diabetol Metab Syndr 7:107 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bansal, P. et al. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft fur Toxikologische Pathologie 64:651–658 (2012).

    Article  CAS  Google Scholar 

  117. Kozuka, M. et al. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice. Biochem Biophys Res Commun 465:433–436 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Kosaraju, J. et al. A molecular connection of Pterocarpus marsupium, Eugenia jambolana and Gymnema sylvestre with dipeptidyl peptidase-4 in the treatment of diabetes. Pharm Biol 52:268–271 (2014).

    Article  PubMed  Google Scholar 

  119. Belle, L. P. et al. Aqueous seed extract of Syzygium cumini inhibits the dipeptidyl peptidase IV and adenosine deaminase activities, but it does not change the CD26 expression in lymphocytes in vitro. J Physiol Biochem 69:119–124 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Purnomo, Y., Soeatmadji, D. W., Sumitro, S. B. & Widodo, M. A. Anti-diabetic potential of Urena lobata leaf extract through inhibition of dipeptidyl peptidase IV activity. Asian Pac J Trop Biomed 5:645–649 (2015).

    Article  Google Scholar 

  121. Gonzalez-Abuin, N. et al. Grape seed-derived procyanidins decrease dipeptidyl-peptidase 4 activity and expression. J Agric Food Chem 60:9055–9061 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Saleem, S. et al. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. J Ethnopharmacol 156:26–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Sharma, B. R. & Rhyu, D. Y. Anti-diabetic effects of Caulerpa lentillifera: stimulation of insulin secretion in pancreatic beta-cells and enhancement of glucose uptake in adipocytes. Asian Pac J Trop Biomed 4:575–580 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sharma, B. R., Kim, H. J. & Rhyu, D. Y. Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes. J Transl Med 13:62 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Gu, L. H. et al. A thin-layer chromatography-bioautographic method for detecting dipeptidyl peptidase IV inhibitors in plants. J Chromatogr A 1411:116–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Permatasari, Y. I. Antidiabetic Activity and Phytochemical Screening of Extracts from Indonesian Plants by Inhibition of Alpha Amylase, Alpha Glucosidase and Dipeptidyl Peptidase IV. PJBS 18:279–284 (2015).

    Google Scholar 

  127. Bower, A. M., Real Hernandez, L. M., Berhow, M. A. & de Mejia, E. G. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV. J Agric Food Chem 62:6147–6158 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Cicero, A. F. & Tartagni, E. Antidiabetic properties of berberine: from cellular pharmacology to clinical effects. Hosp Pract (1995) 40:56–63 (2012).

    Article  Google Scholar 

  129. Wang, J., Dai, G. & Li, W. [Berberine regulates glycemia via local inhibition of intestinal dipeptidyl peptidase-]. Zhejiang Da Xue Xue Bao Yi Xue Ban 45:486–492 (2016).

    PubMed  Google Scholar 

  130. Al-masri, I. M., Mohammad, M. K. & Tahaa, M. O. Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J Enzyme Inhib Med Chem 24:1061–1066 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Peng, C. H. et al. Hibiscus sabdariffa polyphenols alleviate insulin resistance and renal epithelial to mesenchymal transition: a novel action mechanism mediated by type 4 dipeptidyl peptidase. J Agric Food Chem 62:9736–9743 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Huang, C. N., Wang, C. J., Yang, Y. S., Lin, C. L. & Peng, C. H. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance. Food Funct 7:475–482 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, Z. S. et al. Astragaloside IV attenuates proteinuria in streptozotocin-induced diabetic nephropathy via the inhibition of endoplasmic reticulum stress. BMC Nephrol 16:44 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Shahzad, M. et al. Protection against oxidative stressinduced apoptosis in kidney epithelium by Angelica and Astragalus. J Ethnopharmacol 179:412–419 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 6:456–480 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Bestermann, W. et al. Addressing the global cardiovascular risk of hypertension, dyslipidemia, diabetes mellitus, and the metabolic syndrome in the southeastern United States, part II: treatment recommendations for management of the global cardiovascular risk of hypertension, dyslipidemia, diabetes mellitus, and the metabolic syndrome. Am J Med Sci 329:292–305 (2005).

    Article  PubMed  Google Scholar 

  137. Eckel, R. H. et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care 34:1424–1430 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Weyer, C. et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86:1930–1935 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Hajer, G. R., van Haeften, T. W. & Visseren, F. L. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29:2959–2971 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Boden, G. & Shulman, G. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction. Eur J Clin Invest 32:14–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Lowell, B. B. & Shulman, G. I. Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. Eur J Clin Invest 108:1167–1174 (2001).

    Article  CAS  Google Scholar 

  144. Mazzotti, A., Caletti, M. T., Marchignoli, F., Forlani, G. & Marchesini, G. Which treatment for type 2 diabetes associated with non-alcoholic fatty liver disease? Dig Liver Dis 491:235–240 (2016).

    Google Scholar 

  145. Fujita, Y. & Inagaki, N. Metformin: New Preparations and Nonglycemic Benefits. Curr Diab Rep 17:5 (2017).

    Article  PubMed  CAS  Google Scholar 

  146. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. Bmj 330:1304–1305 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Hermann, L. Metformin: a review of its pharmacological properties and therapeutic use. Diabetes Metab 5:233–245 (1979).

    CAS  Google Scholar 

  148. Aleman-Gonzalez-Duhart, D., Tamay-Cach, F., Alvarez-Almazan, S. & Mendieta-Wejebe, J. E. Current Advances in the Biochemical and Physiological Aspects of the Treatment of Type 2 Diabetes Mellitus with Thiazolidinediones. PPAR Res 2016:7614270 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lewis, J. D. et al. Pioglitazone use and risk of bladder cancer and other common cancers in persons with diabetes. Jama 314:265–277 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Leng, W. & Ouyang, X. The SGLT-2 Inhibitor Dapagliflozin Has a Therapeutic Effect on Atherosclerosis in Diabetic ApoE-/-Mice. Mediators Inflamm 2016:6305735 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Rahman, A., Hitomi, H. & Nishiyama, A. Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure. Hypertens Res, doi:10.1038/hr.2016. 193 (2017).

    Google Scholar 

  152. Mosley, J. F., 2nd, Smith, L., Everton, E. & Fellner, C. Sodium-Glucose Linked Transporter 2 (SGLT2) Inhibitors in the Management Of Type-2 Diabetes: A Drug Class Overview. P t 40:451–462 (2015).

    PubMed  PubMed Central  Google Scholar 

  153. Choi, C. I. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors from Natural Products: Discovery of Next-Generation Antihyperglycemic Agents. Molecules 21, doi:10.3390/molecules21091136 (2016).

    Google Scholar 

  154. Scheen, A. J. SGLT2 Inhibitors: Benefit/Risk Balance. Curr Diab Rep 16:92 (2016).

    Article  PubMed  CAS  Google Scholar 

  155. Montane, J., Cadavez, L. & Novials, A. Stress and the inflammatory process: a major cause of pancreatic cell death in type 2 diabetes. Diabetes Metab Syndr Obes 7:25–34 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Tomita, T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosn J Basic Med Sci 16:162 (2016).

    PubMed  PubMed Central  Google Scholar 

  157. Tomita, T. Immunocytochemical localisation of caspase-3 in pancreatic islets from type 2 diabetic subjects. Pathology 42:432–437 (2010).

    Article  PubMed  Google Scholar 

  158. Sebai, H. et al. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats. Lipids Health Dis 12:189 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Talpur, N., Echard, B., Ingram, C., Bagchi, D. & Preuss, H. Effects of a novel formulation of essential oils on glucose-insulin metabolism in diabetic and hypertensive rats: a pilot study. Diabetes Obes Metab 7:193–199 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Duan, J. et al. Aralia taibaiensis Protects Cardiac Myocytes against High Glucose-Induced Oxidative Stress and Apoptosis. Am J Chin Med 43:1159–1175 (2015).

    Article  PubMed  Google Scholar 

  161. Wang, Y. et al. Formononetin attenuates IL-1beta-induced apoptosis and NF-kappaB activation in INS-1 cells. Molecules 17:10052–10064 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Li, R. J., Qiu, S. D., Chen, H. X., Tian, H. & Liu, G. Q. Effect of Astragalus polysaccharide on pancreatic cell mass in type 1 diabetic mice. Zhongguo Zhong Yao Za Zhi 32:2169–2173 (2007).

    PubMed  Google Scholar 

  163. Saxena, A. & Vikram, N. K. Role of selected Indian plants in management of type 2 diabetes: a review. J Altern Complement Med 10:369–378 (2004).

    Article  PubMed  Google Scholar 

  164. Abdollahi, M., Zuki, A. B., Goh, Y. M., Rezaeizadeh, A. & Noordin, M. M. Effects of Momordica charantia on pancreatic histopathological changes associated with streptozotocin-induced diabetes in neonatal rats. Histol Histopathol 26:13–21 (2011).

    CAS  PubMed  Google Scholar 

  165. Halagappa, K., Girish, H. N. & Srinivasan, B. P. The study of aqueous extract of Pterocarpus marsupium Roxb. on cytokine TNF-alpha in type 2 diabetic rats. Indian J Pharmacol 42:392–396 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Liu, Y. W. et al. Ginsenoside Re attenuates diabetesassociated cognitive deficits in rats. Pharmacol Biochem Behav 101:93–98 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Yuan, H. D., Kim, J. T., Kim, S. H. & Chung, S. H. Ginseng and diabetes: the evidences from in vitro, animal and human studies. J Ginseng Res 36:27–39 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Sun, C. et al. Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice. Food Funct 5:845–848 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Shih, C. C., Lin, C. H. & Lin, W. L. Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res Clin Pract 81:134–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Bao, B. et al. Momordica charantia (Bitter Melon) reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues. PloS One 8:e84075 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Li, Z., Geng, Y.-N., Jiang, J.-D. & Kong, W.-J. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. eCAM 2014 (2014).

    Google Scholar 

  172. Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177:566–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Raz, I., Eldor, R., Cernea, S. & Shafrir, E. Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab Res Rev 21:3–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Yun, S. N., Moon, S. J., Ko, S. K., Im, B. O. & Chung, S. H. Wild ginseng prevents the onset of high-fat diet induced hyperglycemia and obesity in ICR mice. Arch Pharm Res 27:790–796 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Hwang, J. T. et al. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun 364:1002–1008 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Quan, H. Y. et al. Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice. Int J Mol Med 29:73–80 (2012).

    CAS  PubMed  Google Scholar 

  177. Cho, W. C. et al. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur J Pharmacol 550:173–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Gao, Y. et al. Ginsenoside Re reduces insulin resistance through activation of PPAR-gamma pathway and inhibition of TNF-alpha production. J Ethnopharmacol 147:509–516 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Kiho, T. et al. Antidiabetic effect of an acidic polysaccharide (TAP) from Tremella aurantia and its degradation product (TAP-H). Biol Pharm Bull 24:1400–1403 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Chen, Z. H. et al. Saponins isolated from the root of Panax notoginseng showed significant anti-diabetic effects in KK-Ay mice. Am J Chin Med 36:939–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. El Barky, A. R., Hussein, S. A., Alm-Eldeen, A. A., Hafez, Y. A. & Mohamed, T. M. Anti-diabetic activity of Holothuria thomasi saponin. Biomed Pharmacother 84:1472–1487 (2016).

    Article  PubMed  CAS  Google Scholar 

  182. Shao, X. et al. Protective effect of compound K on diabetic rats. Nat Prod Commun 10:243–245 (2015).

    PubMed  Google Scholar 

  183. Chung, M. J., Cho, S. Y., Bhuiyan, M. J., Kim, K. H. & Lee, S. J. Anti-diabetic effects of lemon balm (Melissa officinalis) essential oil on glucose-and lipid-regulating enzymes in type 2 diabetic mice. Br J Nutr 104:180–188 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Yuan, L., Tu, D., Ye, X. & Wu, J. Hypoglycemic and hypocholesterolemic effects of Coptis chinensis franch inflorescence. Plant Foods Hum Nutr 61:139–144 (2006).

    Article  PubMed  Google Scholar 

  185. Erejuwa, O. O., Sulaiman, S. A. & Wahab, M. S. Honey-a novel antidiabetic agent. Int J Biol Sci 8:913–934 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Bahrami, M. et al. Effects of natural honey consumption in diabetic patients: an 8-week randomized clinical trial. Int J Food Sci Nutr 60:618–626 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Chang, W. C. et al. Beneficial effects of soluble dietary Jerusalem artichoke (Helianthus tuberosus) in the prevention of the onset of type 2 diabetes and non-alcoholic fatty liver disease in high-fructose diet-fed rats. Br J Nutr 112:709–717 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Wilcox, G. Insulin and insulin resistance. Clin Biochem Rev 26:19–39 (2005).

    PubMed  PubMed Central  Google Scholar 

  189. Zhen, Z. et al. Anti-diabetic effects of a Coptis chinensis containing new traditional Chinese medicine formula in type 2 diabetic rats. Am J Chin Med 39:53–63 (2011).

    Article  PubMed  Google Scholar 

  190. Agyemang, K. et al. Recent Advances in Astragalus membranaceus Anti-Diabetic Research: Pharmacological Effects of Its Phytochemical Constituents. eCAM 2013:654643 (2013).

    PubMed  PubMed Central  Google Scholar 

  191. Jiang, S. et al. Effects of compound K on hyperglycemia and insulin resistance in rats with type 2 diabetes mellitus. Fitoterapia 95:58–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Wei, S. et al. Ginsenoside Compound K suppresses the hepatic gluconeogenesis via activating adenosine-5’monophosphate kinase: A study in vitro and in vivo. Life Sci 139:8–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Attele, A. S. et al. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51:1851–1858 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. Sil, R., Ray, D. & Chakraborti, A. S. Glycyrrhizin ameliorates insulin resistance, hyperglycemia, dyslipidemia and oxidative stress in fructose-induced metabolic syndrome-X in rat model. Indian J Exp Biol 51:129–138 (2013).

    CAS  PubMed  Google Scholar 

  195. Sen, S., Roy, M. & Chakraborti, A. S. Ameliorative effects of glycyrrhizin on streptozotocin-induced diabetes in rats. J Pharm Pharmacol 63:287–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Teng, H. & Choi, Y. H. Optimization of ultrasonicassisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology. Food Chem 142:299–305 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Yang, T. C. et al. Alkaloids from Coptis chinensis root promote glucose uptake in C2C12 myotubes. Fitoterapia 93:239–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Yang, F., Zhang, T., Zhang, R. & Ito, Y. Application of analytical and preparative high-speed counter-current chromatography for separation of alkaloids from Coptis chinensis Franch. J Chromatogr A 829:137–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  199. Grahame Hardie, D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharmaceutica Sinica. B 6:1–19 (2016).

    Article  PubMed  Google Scholar 

  200. Gannon, N. P., Lambalot, E. L. & Vaughan, R. A. The effects of capsaicin and capsaicinoid analogs on metabolic molecular targets in highly energetic tissues and cell types. BioFactors (Oxford, England) 42:229–246 (2016).

    CAS  Google Scholar 

  201. Seufert, J. SGLT2 inhibitors-an insulin-independent therapeutic approach for treatment of type 2 diabetes: focus on canagliflozin. Diabetes Metab Syndr Obes 8:543 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Ehrenkranz, J. R., Lewis, N. G., Kahn, C. R. & Roth, J. Phlorizin: a review. Diabetes/Metabolism Research and Reviews 21:31–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  203. Nauck, M. A. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther 8:1335–1380 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. NAGAI, M., KUBO, M., FUJITA, M., INOUE, T. & MATSUO, M. Studies on the constituents of aceraceae plants. II. Structure of aceroside I, a glucoside of a novel cyclic diarylheptanoid from Acer nikoense Maxim. Chem Pharm Bull 26:2805–2810 (1978).

    Article  CAS  Google Scholar 

  205. Qu, Y. et al. Antidiabetic effect of Schisandrae Chinensis Fructus involves inhibition of the sodium glucose cotransporter. Drug Dev Res 76:1–8 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Yang, J. et al. Sodium-glucose-linked transporter 2 inhibitors from Sophora flavescens. Med Chem Res 24:1265–1271 (2015).

    Article  CAS  Google Scholar 

  207. He, X., Fang, J., Huang, L., Wang, J. & Huang, X. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. Journal of Ethnopharmacology 172:10–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  208. Tadera, K., Minami, Y., Takamatsu, K. & Matsuoka, T. Inhibition of α-glucosidase and α-amylase by flavonoids. J Nutr Sci Bitaminol 52:149–153 (2006).

    Article  CAS  Google Scholar 

  209. Shobana, S., Sreerama, Y. & Malleshi, N. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chemistry 115:1268–1273 (2009).

    Article  CAS  Google Scholar 

  210. Tundis, R., Loizzo, M. & Menichini, F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem 10:315–331 (2010).

    Article  CAS  PubMed  Google Scholar 

  211. Benalla, W., Bellahcen, S. & Bnouham, M. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors. Curr Diabetes Rev 6:247–254 (2010).

    Article  CAS  PubMed  Google Scholar 

  212. Poovitha, S. & Parani, M. In vitro and in vivo alpha-amylase and alpha-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement Altern Med 16 Suppl 1:185 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Heo, S.-J. et al. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates post-prandial hyperglycemia in diabetic mice. Eur Heart J Cardiovasc Pharmacother 615:252–256 (2009).

    CAS  Google Scholar 

  214. Bhandari, M. R., Jong-Anurakkun, N., Hong, G. & Kawabata, J. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chemistry 106:247–252 (2008).

    Article  CAS  Google Scholar 

  215. Lee, S.-H. et al. Dieckol isolated from Ecklonia cava inhibits α-glucosidase and α-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food Chem Toxicol 48:2633–2637 (2010).

    Article  CAS  PubMed  Google Scholar 

  216. Kaur, P., Garg, V., Gulati, M. & Singh, S. K. Oral Delivery of Antidiabetic Polypeptide-k: Journey so far and the Road Ahead. Curr Drug Deliv 13:236–244 (2016).

    Article  CAS  PubMed  Google Scholar 

  217. Ahmad, Z. et al. In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules 17:9631–9640 (2012).

    Article  CAS  PubMed  Google Scholar 

  218. Xu, D. et al. Inhibitory activities of caffeoylquinic acid derivatives from Ilex kudingcha C.J. Tseng on alpha-glucosidase from Saccharomyces cerevisiae. J Agric Food Chem 63:3694–3703 (2015).

    Article  CAS  PubMed  Google Scholar 

  219. Ishikawa, A. et al. Characterization of inhibitors of postprandial hyperglycemia from the leaves of Nerium indicum. J Nutr Sci Vitaminol (Tokyo) 53:166–173 (2007).

    Article  CAS  Google Scholar 

  220. Esatbeyoglu, T. et al. Fractionation of Plant Bioactives from Black Carrots (Daucus carota subspecies sativus varietas atrorubens Alef.) by Adsorptive Membrane Chromatography and Analysis of Their Potential Anti-Diabetic Activity. J Agric Food Chem 64:5901–5908 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. Kwon, Y.-I. I., Vattem, D. A. & Shetty, K. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac J Clin Nutr 15:107–118 (2006).

    PubMed  Google Scholar 

  222. Ademiluyi, A. O. & Oboh, G. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Exp Toxicol Pathol 65:305–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  223. Striegel, L., Kang, B., Pilkenton, S. J., Rychlik, M. & Apostolidis, E. Effect of black tea and black tea pomace polyphenols on α-glucosidase and α-amylase inhibition, relevant to type 2 diabetes prevention. Front Nutr 2:3 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Sun, L., Warren, F. J., Netzel, G. & Gidley, M. J. 3 or 3’-Galloyl substitution plays an important role in association of catechins and theaflavins with porcine pancreatic α-amylase: The kinetics of inhibition of α-amylase by tea polyphenols. J Funct Foods 26:144–156 (2016).

    Article  CAS  Google Scholar 

  225. Devi, P. B., Vijayabharathi, R., Sathyabama, S., Malleshi, N. G. & Priyadarisini, V. B. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci Technol 51:1021–1040 (2014).

    Article  CAS  PubMed  Google Scholar 

  226. Toft-Nielsen, M.-B., Madsbad, S. & Holst, J. J. Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care 22:1137–1143 (1999).

    Article  CAS  PubMed  Google Scholar 

  227. Van Can, J. et al. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes 38:784–793 (2014).

    Article  CAS  Google Scholar 

  228. Ríos, J. L., Francini, F. & Schinella, G. R. Natural products for the treatment of type 2 diabetes mellitus. Planta Medica 81:975–994 (2015).

    Article  PubMed  CAS  Google Scholar 

  229. Alam, F., Islam, M. A., Kamal, M. A. & Gan, S. H. Updates on managing type 2 diabetes mellitus with natural products: towards antidiabetic drug development. Curr Med Chem 23:1–37 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeung-Jin Jang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Jang, HJ. Anti-diabetic effects of natural products an overview of therapeutic strategies. Mol. Cell. Toxicol. 13, 1–20 (2017). https://doi.org/10.1007/s13273-017-0001-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-017-0001-1

Keywords

Navigation