Skip to main content
Log in

Fibrinogen as a promising material for various biomedical applications

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

As demands for innovative drug carriers and transplantable organs increase, many researchers have developed diverse drug carriers and scaffolds using various materials. However, several candidate materials have shown systemic toxicity, making them unsuitable for clinical use. Fibrinogen (Fbg), a natural polymer, could be a promising material for applications in biomedical engineering owing to its biocompatibility and biodegradability, as reported in numerous studies. Moreover, autologous Fbg is abundant in blood and can be easily extracted, presenting Fbg as an excellent biomaterial for biomedical applications due to minimal immunological rejection. In addition, the biocompatibility of other materials could be improved by combining them with Fbg. Over the next few years, Fbg could be widely used in various biomedical and clinical fields. Here, we discuss the characteristics of Fbg and fabricating methods for Fbg scaffolds in various biomedical applications. The future prospects of Fbg as an applicable biomaterial, especially in organ fabrication by the cutting-edge 3D bioprinting technology, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma, A. & Jain, C. P. Solid dispersion: A promising technique to enhance solubility of poorly water soluble drug. Int J Drug Delivery 3:149–170 (2011).

    CAS  Google Scholar 

  2. Bhunchu, S. & Rojsitthisak, P. Biopolymeric alginatechitosan nanoparticles as drug delivery carriers for cancer therapy. Die Pharmazie 69:563–570 (2014).

    CAS  PubMed  Google Scholar 

  3. Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Delivery Rev 65:36–48 (2013).

    Article  CAS  Google Scholar 

  4. Grossman, J. H. & McNeil, S. E. Nanotechnology in Cancer Medicine. Phys Today 65:38 (2012).

    Article  CAS  Google Scholar 

  5. Beenken-Rothkopf, L. N. et al. The incorporation of extracellular matrix proteins in protein polymer hydrogels to improve encapsulated beta-cell function. Ann Clin Lab Sci 43:111–121 (2013).

    CAS  PubMed  Google Scholar 

  6. Choi, J. H. et al. Fabrication of HepG2 cell laden collagen microspheres using inkjet printing. J Korean Soc Precis Eng 31:743–747 (2014).

    Article  Google Scholar 

  7. Chan, B. P. et al. Mesenchymal stem cell-encapsulated collagen microspheres for bone tissue engineering. Tissue Eng Part C 16:225–235 (2010).

    Article  CAS  Google Scholar 

  8. Kopecek, J., Kopeckova, P., Minko, T. & Lu, Z. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm 50: 61–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Drobnik, J., Saudek, V., Vlasak, J. & Kalal, J. Polyaspartamide-a potential drug carrier. J Polym Sci: Polym Symp 66:65–74 (1979).

    CAS  Google Scholar 

  10. Cai, W., Gao, T., Hong, H. & Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32 (2008).

    PubMed Central  CAS  PubMed  Google Scholar 

  11. de Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomed 3:133–149 (2008).

    Article  Google Scholar 

  12. Adhirajan, N., Shanmugasundaram, N. & Babu, M. Gelatin microspheres cross-linked with EDC as a drug delivery system for doxycyline: development and characterization. J Microencapsulation 24:647–659(2007).

    Article  CAS  PubMed  Google Scholar 

  13. Rathod, S. & Deshpande, S. G. Albumin microspheres as an ocular delivery system for pilocarpine nitrate. Indian J Pharm Sci 70:193–197 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  14. Arangoa, M. A. et al. nanoparticles as carriers for the oral administration of lipophilic drugs. Relationships between bioadhesion and pharmacokinetics. Pharm Res 18:1521–1527 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Lazko, J., Popineau, Y. & Legrand, J. Soy glycinin microcapsules by simple coacervation method. Colloids Surf B 37:1–8 (2004).

    Article  CAS  Google Scholar 

  16. Livney, Y. D. Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci 15:73–83 (2010).

    Article  CAS  Google Scholar 

  17. Rajangam, T., Paik, H. J. & An, S. S. A. Development of fibrinogen microspheres as a biodegradable carrier for tissue engineering. BioChip J 5:175–183 (2011).

    Article  CAS  Google Scholar 

  18. Stec, J. J. et al. Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham Offspring Population. Circulation 102: 1634–1638 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Mosesson, M. W., Siebenlist, K. R. & Meh, D. A. The structure and biological features of fibrinogen and fibrin. Ann N Y Acad Sci 936:11–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Sporn, L. A., Bunce, L. A. & Francis, C. W. Cell proliferation on fibrin: modulation by fibrinopeptide cleavage. Blood 86:1802–1810 (1995).

    CAS  PubMed  Google Scholar 

  21. Hamaguchi, M., Bunce, L. A., Sporn, L. A. & Francis, C. W. Spreading of platelets on fibrin is mediated by the amino terminus of the beta chain including peptide beta 15–42. Blood 81:2348–2356 (1993).

    CAS  PubMed  Google Scholar 

  22. Skogen, W. F., Senior, R. M., Griffin, G. L. & Wilner, G. D. Fibrinogen-derived peptide B beta 1–42 is a multidomained neutrophil chemoattractant. Blood 71:1475–1479 (1988).

    CAS  PubMed  Google Scholar 

  23. Sahni, A., Odrljin, T. & Francis, C. W. Binding of basic fibroblast growth factor to fibrinogen and fibrin. J Biol Chem 273:7554–7559 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Campbell, P. G. et al. Insulin-like growth factor-binding protein-3 binds fibrinogen and fibrin. J Biol Chem 274:30215–30221 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Ruoslahti, E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Francavilla, C., Maddaluno, L. & Cavallaro, U. The functional role of cell adhesion molecules in tumor angiogenesis. Semin Cancer Biol 19:298–309 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Hallahan, D. et al. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 3:63–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, Y. et al. Tumor alphavbeta3 integrin is a therapeutic target for breast cancer bone metastases. Cancer Res 67:5821–5830 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Desgrosellier, J. S. et al. An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med 15:1163–1169 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Cooper, C. R., Chay, C. H. & Pienta, K. J. The role of alpha(v)beta(3) in prostate cancer progression. Neoplasia (N. Y., NY, U. S.) 4:191–194 (2002).

    Article  CAS  Google Scholar 

  31. Xu, W. et al. RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating alpha(v)beta(3) expression. Int J Nanomed 7:915–924 (2012).

    CAS  Google Scholar 

  32. Ji, S. et al. RGD-conjugated albumin nanoparticles as a novel delivery vehicle in pancreatic cancer therapy. Cancer Biol Ther 13:206–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Nasongkla, N. et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed Engl 43:6323–6327 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Zhan, C. et al. Cyclic RGD conjugated poly (ethylene glycol)-co-poly (lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Controlled Release 143: 136–142 (2010).

    Article  CAS  Google Scholar 

  35. Borgman, M. P. et al.. Biodistribution of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer drug delivery. Mol Pharmaceutics 6:1836–1847 (2009).

    Article  CAS  Google Scholar 

  36. Meng, S. et al. Integrin-targeted paclitaxel nanoliposomes for tumor therapy. Med Oncol 28:1180–1187 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Scheffel, U., Rhodes, B. A., Natarajan, T. K. & Wagner, H. N., Jr. Albumin microspheres for study of the reticuloendothelial system. J Nucl Med 13:498–503 (1972).

    CAS  PubMed  Google Scholar 

  38. Miyazaki, S. et al. Fibrinogen microspheres as novel drug delivery systems for antitumor drugs. Chem Pharm Bull 34:1370–1375 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Miyazaki, S. et al. Preparation and evaluation in vitro and in vivo of fibrinogen microspheres containing adriamycin. Chem Pharm Bull 34:3384–3393 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Miyazaki, S. et al. Antitumour effect of fibrinogen microspheres containing doxorubicin on Ehrlich ascites carcinoma. J Pharm Pharmacol 38:618–620 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. Rejinold, N. S. et al. Development of novel fibrinogen nanoparticles by two-step co-acervation method. Int J Biol Macromol 47:37–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Rejinold, N. S. et al. 5-fluorouracil loaded fibrinogen nanoparticles for cancer drug delivery applications. Int J Biol Macromol 48:98–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, S. et al. Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Nisisako, T., Torii, T. & Higuchi, T. Droplet formation in a microchannel network. Lab Chip 2:24–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Li, X.B. et al. Study on the mechanism of droplet formation in T-junction microchannel. Chem Eng Sci 69: 340–351 (2012).

    Article  CAS  Google Scholar 

  46. Hawiger, J. Formation and regulation of platelet and fibrin hemostatic plug. Hum Pathol 18:111–122 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Spotnitz, W. D. Fibrin sealant: The only approved hemostat, sealant, and adhesive-a Laboratory and clinical perspective. ISRN surgery 2014:1–28 (2014).

    Article  Google Scholar 

  48. Erdogan, D. & van Gulik, T. M. Evolution of fibrinogen-coated collagen patch for use as a topical hemostatic agent. J Biomed Mater Res Part B 85:272–278 (2008).

    Article  Google Scholar 

  49. Zhang, G. et al. PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Eng 12:9–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Wnek, G. E., Carr, M. E., Simpson, D. G. & Bowlin, G. L. Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:213–216 (2003).

    Article  CAS  Google Scholar 

  51. Moretz, W. H., Jr., Shea, J. J., Jr., Emmett, J. R. & Shea, J. J., 3rd. A simple autologous fibrinogen glue for otologic surgery. Otolaryngol—Head Neck Surg 95:122–124 (1986).

    PubMed  Google Scholar 

  52. Dhandayuthapani, B., Yoshida, Y., Maekawa, T. & Kumar, D. S. Polymeric scaffolds in tissue engineering application: A review. Int J Polym Sci 2011:1–19 (2011).

    Article  Google Scholar 

  53. Peled, E. et al. A novel poly (ethylene glycol)-fibrinogen hydrogel for tibial segmental defect repair in a rat model. J Biomed Mater Res, Part A 80:874–884 (2007).

    Article  Google Scholar 

  54. Dejana, E. et al. Interaction between fibrinogen and cultured endothelial cells. Induction of migration and specific binding. J Clin Invest 75:11–18 (1985).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Almany, L. & Seliktar, D. Biosynthetic hydrogel scaf-folds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26:2467–2477 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. He, C. et al. Fabrication of fibrinogen/P (LLA-CL) hybrid nanofibrous scaffold for potential soft tissue engineering applications. J Biomed Mater Res Part A 97: 339–347 (2011).

    Article  Google Scholar 

  57. Fang, Z. et al. Preparation and biocompatibility of electrospun poly(l-lactide-co-ε-caprolactone)/fibrinogen blended nanofibrous scaffolds. Appl Surf Sci 257: 4133–4138 (2011).

    Article  CAS  Google Scholar 

  58. Percçin, G. K. & Khuri-Yakub, B. T. Piezoelectric droplet ejector for ink-jet printing of fluids and solid particles. Rev Sci Instrum 74:1120 (2003).

    Article  Google Scholar 

  59. Böhmer, M. R., Steenbakkers, J. A. M. & Chlon, C. Monodisperse polymeric particles prepared by ink-jet printing: Double emulsions, hydrogels and polymer mixtures. Colloids Surf B 79:47–52 (2010).

    Article  Google Scholar 

  60. Böhmer, M. R. et al. Preparation of monodisperse polymer particles and capsules by ink-jet printing. Colloids Surf A 289:96–104 (2006).

    Article  Google Scholar 

  61. Fletcher, R. A. et al. Fabrication of polymer microsphere particle standards containing trace explosives using an oil/water emulsion solvent extraction piezoelectric printing process. Talanta 76:949–955 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Radulescu, D., Schwade, N. & Wawro, D. Uniform paclitaxel-loaded biodegradable microspheres manufactured by ink-jet technology. Proc Recent Adv in Drug Delivery Sys 1–5 (2003).

    Google Scholar 

  63. Khatiwala, C. et al. 3d cell bioprinting for regenerative medicine research and therapies. Gene Ther Regul 7: 1230004 (2012).

    Article  Google Scholar 

  64. Gregor, A., Hošek, J. 3D printing methods of biological materials used in tissue engineering. International Conference MECAHITECH’10, Bucharest, Romania, 23–24 September 2010.

    Google Scholar 

  65. Skardal, A. et al.. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1:792–802 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Reiffel, A. J. et al. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PloS One 8: e56506 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Atala, A. et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246 (2006).

    Article  PubMed  Google Scholar 

  68. Fielding, G. & Bose, S. SiO2 and ZnO dopants in threedimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater 9:9137–9148 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Zopf, D. A. et al. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 368:2043–2045 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Nakamura, M. et al. Computer-assisted biofabrication. Symposium on VLSI Technology Digest of Technical Papers, Kyoto, Japan, June 2011.

    Google Scholar 

  71. Mironov, V. et al. Organ printing: computer-aided jetbased 3D tissue engineering. Trends Biotechnol 21:157–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Mironov, V. et al. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Cui, X. & Boland, T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Soo A. An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joo, J.Y., Amin, M.L., Rajangam, T. et al. Fibrinogen as a promising material for various biomedical applications. Mol. Cell. Toxicol. 11, 1–9 (2015). https://doi.org/10.1007/s13273-015-0001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-015-0001-y

Keywords

Navigation