Skip to main content
Log in

Oxidative stress in juvenile common carp (Cyprinus carpio) exposed to TiO2 nanoparticles

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Acute toxicity and oxidative stress caused by exposure of titanium dioxide nanoparticles (TiO2-NPs) in juvenile common carp (Cyprinus carpio) were investigated. TiO2-NPs solution was prepared using deionized water and dispersed by sonication. Juvenile carp were exposed to different concentrations (5, 10, 20, 40, and 80 mg/L) of TiO2-NPs. TiO2-NP characteristics (particle morphology, size distribution, and zetapotential) were analyzed using transmission electron microscopy (TEM) and dynamic light scattering (DLS). Different tissue samples (skin, liver, brain, and gill) of fish were dissected, and the biochemical responses (catalase [CAT] and glutathione S-transferase [GST] activities) were measured. The results showed that acute exposure to TiO2-NPs induced GST and CAT levels to vary in all observed organs. The effective concentration of TiO2-NPs was 20 mg/L in the liver and brain and 40 mg/L in the gill. Histopathological changes were as follows: (1) skin: hypertrophy and increased number of mucous cells and thickening of the epidermal layer; (2) gill: hypertrophy of chloride cells, degeneration of mucous cells, and increased acidification of mucous cells; and (3) liver: hyperplasia and cytoplasm vacuolation of hepatic cells. No lethal effects were observed during the acute test. Our results show that there is a potential risk of TiO2-NP exposure to aquatic organisms in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nel, A. et al. Toxic potential of materials at the nanolevel. Science 311:622–627 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. Nowack, B. & Bucheli, T. D. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Hao, L. et al. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). Environ Sci 21:1459–1466 (2009).

    Article  CAS  Google Scholar 

  4. Oberdorster, E. Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112: 1058–1062 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. Masciangoli, T. & Zhang, W. X. Environmental technologies at the nanoscale. Environ Sci Technol 1:102–108 (2003).

    Article  Google Scholar 

  6. Nohynek, J. G. et al. Gray goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. Vaseashta, A. et al. Nanostructures in environmental pollution detection, mornitoring and remediation. Sci Tech Adv Mat 8:47–59 (2007).

    Article  CAS  Google Scholar 

  8. Hirakawa, K. et al. Photo-irradiated titanium dioxide catalyses site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 38:439–447 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Sayes, C. M. et al. Correlating nanoscale titania structure with toxicity: A cytotocicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 82:174–185 (2006).

    Article  Google Scholar 

  10. Park, E.-J. et al. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–229 (2008).

    Article  PubMed  CAS  Google Scholar 

  11. Chen, H.-W. et al. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20:2393–2395 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Grassian, V. H. et al. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115:397–402 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. Warheit, D. B. et al. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99–110 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. Lowvern, S. B. & Klaper, R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137 (2006).

    Article  Google Scholar 

  15. Federici, G. et al. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. Zhang, X. et al. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67:160–166 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. Douglas, K. T. Mechanism of action of glutathionedependent enzymes. Adv Enzymol Relat Areas Mol Biol 59:103–167 (1987).

    PubMed  CAS  Google Scholar 

  18. Wilce, M. C. & Parker, M. W. Structure and function of glutathione S-transferases. Biochim Biophys Acta 1205:1–18 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. Jemec, A. et al. Effects of ingested nano-sized titanium dioxide on terrestrial isopod (Porcellio scaber). Environ Toxicol Chem 27:1904–1914 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. Halliwell, B. & Gutteridge, G. M. C. Free radicals in biology and medicine. Oxford University Press, New York, NY, USA (2007).

    Google Scholar 

  21. Chelikani, P. et al. Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. Gurr, J. R. et al. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. Hirano, K. et al. Effect of sonication on the photocatalytic mineralization of some chlorinated organic compounds. Ultrason Sonochem 12:271–276 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. Reeves, J. F. et al. Hydroxyl radicals (·OH) are associated with titanium dioxide (TiO2) nanopaticle induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 640:113–122 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. Brown, P. J. et al. Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a noncarcinogenic polycyclic aromatic hydrocabon. Chemosphere 57:1675–1681 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. Jemec, A. et al. Comparative toxicity of imidacloprid, of its commercial liquid formulation, and of diazinon to a nontarget arthorpod, the microcrustacean Daphnia magna. Chemosphere 68:1408–1418 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. Handy, R. D. & Eddy, F. B. Transport of solutes across biological membranes in eukaryotes: an environmental perspective. John Wiley, Chichester (2004).

    Google Scholar 

  28. Bermudez, E. et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–357 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. Warheit, D. B. et al. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99–110 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. Rahman, Q. et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect 110:797–800 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. Shephard, K. L. Functions for fish mucus. Rev Fish Biol Fisher 4:401–429 (1994).

    Article  Google Scholar 

  32. Perry, S. F. The chloride cell: structure and function in the gills of freshwater fishes. Annu Rev Physiol 59:325–347 (1997).

    Article  PubMed  CAS  Google Scholar 

  33. Kim, E. J. et al. Correlation of biomarker and histological responses in manufactured silver nanoparticle toxicity. Toxicol Environ Health Sci 1:8–16 (2009a).

    Article  Google Scholar 

  34. Kim, Y. J. et al. Genotoxicity of aluminum oxide (Al2O3) nanoparticle in mamalian cell lines. Mol Cell Toxicol 5:172–178 (2009b).

    Google Scholar 

  35. Smith, C. J. et al. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. OECD. Test No. 203: Fish, Acute toxicity test, in: OECD(Ed.), OECD Guidelines for the testing of chemicals. Organisation for Economic Co-operation and Development, Paris (1992).

  37. Abei, H. Catalase, in: Bergmeyer, H.U. (Ed.), Methods of enzymatic analysis. Academic Press, New York, pp. 673–684 (1974).

    Chapter  Google Scholar 

  38. Bradford, M. M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Hee Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, B.C., Kim, K.T., Cho, J.G. et al. Oxidative stress in juvenile common carp (Cyprinus carpio) exposed to TiO2 nanoparticles. Mol. Cell. Toxicol. 8, 357–366 (2012). https://doi.org/10.1007/s13273-012-0044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-012-0044-2

Keywords

Navigation