Skip to main content
Log in

Verification of hotspots of genetic diversity in Korean population of Grateloupia asiatica and G. jejuensis (Rhodophyta) show low genetic diversity and similar geographic distribution

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Understanding the genetic diversity and distribution patterns of seaweeds species is crucial for evaluating key regions of high genetic diversity. Identifying hotspots of high intraspecific diversity is an important step for developing conservation strategies. Grateloupia is a diverse genus of Rhodophyta, many of which are resource of numerous useful bioactive compounds; therefore, the genus is valuable target for conservation.

Objective

The aim of this study is to examine the genetic diversity and population structure of two Grateloupia species, Grateloupia asiatica and Grateloupia jejuensis, with the understanding of the phylogeography of the Korean genetic diversity hotspot for two species.

Methods

Plastid rbcL gene sequences of 134 specimens of G. asiatica and 112 specimens of G. jejuensis collected from the Korean coast were analyzed. We evaluated the number of haplotypes, genetic diversity (haplotype and nucleotide diversity), and haplotype networks of two species. Historical demographic was inferred by calculating neutrality tests and genetic differentiation was estimated using the fixation index, FST.

Results

Our results show that both species are generally similar in geographical distribution patterns, that is, relatively homogeneous with few haplotypes derived from the most frequent haplotype. The east coast of Korea is identified as a ‘hotspot’ with the highest genetic diversity for both species, whereas Jeju Island is identified as a ‘cold spot’ with the lowest genetic diversity for G. jejuensis. Analyses across most distribution ranges of the two species in Korea reveal low genetic and haplotype diversities, which could indicate that these two Grateloupia species have either experienced a historical lack of diversity or a recent reduction in diversity due to high gene flow.

Conclusions

The low genetic diversity values found in the present study raise considerable concern about the conservation status of these two Grateloupia species and highlight the need to locate further hotspots of genetic diversity to strengthen their resilience against further decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguirre-Planter E, Parra-Leyva JG, Ramíraz-Barahona SR, Scheinvar E, Lira-Saade R, Eguiarte LE (2020) Phylogeography and genetic diversity in a Southern North American desert: Agave kerchovei from the Tehuacán–Cuicatlán valley, Mexico. Front Plant Sci 11:863. https://doi.org/10.3389/fpls.2020.00863

    Article  PubMed  PubMed Central  Google Scholar 

  • Barkely RA (1970) The Kuroshio current. Science 6:54–60

    Google Scholar 

  • Boo GH, Qui Y-X, Kim JY, Ang PO Jr, Bosch S, De Clerck O, He P, Higa A, Huang B, Kogame K, Liu S-L, Nguyen T, Suda S, Terada R, Miller KA, Boo SM (2019) Contrasting patterns of genetic structure and phylogeography in the marine agarophytes Gelidium divaricatus and G. freshwateri (Gelidiales, Rhodophyta) from East Asia. J Phycol 55:1319–1334

    Article  Google Scholar 

  • Cheang CC, Chu KH, Ang PO Jr (2010) Phylogeography of the marine macroalga Sargassum hemiphyllum (Phaeophyceae, Heterokontophyta) in northwestern Pacific. Mol Ecol 19:2933–2929

    Article  CAS  Google Scholar 

  • Chiocchio A, Arntzen JW, Martínez-Solano I, De Vries W, Bisconti R, Pezzarossa A, Maiorano L, Canestrelli D (2021) Reconstructing hotspots of genetic diversity from glacial refugia and subsequent dispersal in Italian common toads (Bufo bufo). Sci Rep 11:260. https://doi.org/10.1038/s41598-020-79046-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24(1):217–242

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite er 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  Google Scholar 

  • Freshwater DW, Rueness J (1994) Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species, based on rbcL nucleotide sequence analysis. Phycologia 33:187–194

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    Article  CAS  Google Scholar 

  • Gargiulo GM, Morabito M, Manghisi A (2013) A re-assessment of reproductive anatomy and postfertilization development in the systematics of Grateloupia (Halymeniales, Rhodophyta). Cryptogam Algol 34:3–35

    Article  Google Scholar 

  • Gavio B, Fredericq S (2002) Grateloupia turuturu (Halymeniaceae, Rhodophyta) is the correct name of the non-native species in the Atlantic known as Grateloupia doryphora. Eur J Phycol 37:349–359

    Article  Google Scholar 

  • Geoffroy A, Destombe C, Kim B, Mauger S, Raffo MP, Kim MS, Le Gall L (2016) Patterns of genetic diversity of the cryptogenetic red alga Polysiphonia morrowii (Ceramiales, Rhodophyta) suggest multiple origins of the Atlantic populations. Ecol Evol 6:5635–5647

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2021) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org. Accessed 17 Feb 2021

  • Hamabata T, Kinoshita G, Kurita K, Cao P-L, Ito M, Murata J, Komaki Y, Isagi Y, Makino T (2019) Endangered island endemic plants have vulnerable genomes. Commun Biol 2:244. https://doi.org/10.1038/s42003-019-0490-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Z-M, Li J-J, Sun Z-M, O J-H, Zhang J, Fresia P, Grant WS, Duan D-L (2015) Phylogeographic structure and deep lineage diversification of the red alga Chondrus ocellatus Holmes in the Northwest Pacific. Mol Ecol 24:5020–5033

    Article  Google Scholar 

  • Kawaguchi S, Wang HW, Horiguchi T, Sartoni G, Masuda M (2001) A comparative study of the red alga Grateloupia filicina (Halymeniaceae) from the northwestern Pacific and Mediterranean with the description of Grateloupia asiatica, sp. nov. J Phycol 37:433–442

    Article  CAS  Google Scholar 

  • Kim MS, Kim SY, Nelson W (2010) Symphyocladia lithophila sp. nov. (Rhodomelaceae, Ceramiales), a new Korean red algal species based on morphology and rbcL sequences. Bot Mar 53:233–241

    Article  Google Scholar 

  • Kim KM, Hoarau GG, Boo SM (2012) Genetic structure and distribution of Gelidium elegans (Gelidiales, Rhodophyta) in Korea based on mitochondrial cox1 sequence data. Aquat Bot 98:27–33

    Article  Google Scholar 

  • Kim SY, Han EG, Kim MS, Park JK, Boo SM (2013) Grateloupia jejuensis (Halymeniales, Rhodophyta): a new species previously confused with G. elata and G. cornea in Korea. Algae 28:233–240

    Article  Google Scholar 

  • Kim SY, Manghisi A, Marabito M, Yang EC, Yoon HS, Miller KA, Boo SM (2014) Genetic diversity and haplotype distribution of Pachymeniopsis gargiuli sp. nov. and P. lanceolata (Halymeniales, Rhodophyta) in Korea, with notes on their non-native distributions. J Phycol 50:885–896

    Article  CAS  Google Scholar 

  • Koh YH, Kim MS (2020) Genetic diversity and distribution pattern of economic seaweeds Pyropia yezoensis and Py. suborbiculata (Bangiales, Rhodophyta) in the northwest Pacific. J Appl Phycol 32:2495–2504

    Article  CAS  Google Scholar 

  • Lee HW, Kim MS (2019) Female reproductive structures define the novel genus, Nesoia (Halymeniaceae, Rhodophyta). Eur J Phycol 54:66–77

    Article  Google Scholar 

  • Lee HG, Lu YA, Je JG, Jayawardena TU, Kang MC, Lee SH, Kim TH, Lee DS, Lee JM, Yim MJ, Kim HS, Jeon YJ (2021) Effects of ethanol extracts from Grateloupia elliptica, a red seaweed, and its chlorophyll derivative on 3T3-L1 adipocytes: suppression of lipid accumulation through downregulation of adipogenic protein expression. Mar Drugs 19:91. https://doi.org/10.3390/md19020091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S-M, De Clerck O, Leliaert F, Chuang Y-C (2020) Systematics and biogeography of the red algal genus Yonagunia (Halymeniaceae, Rhodophyta) from the Indo-Pacific including the description of two new species from Taiwan. J Phycol 56:1542–1556

    Article  CAS  Google Scholar 

  • Maneiro I, Couceiro L, Bárbara I, Cremades J, Muiz JM, Barreiro R (2011) Low genetic variation and isolation of northern peripheral populations of a red seaweed (Grateloupia lanceola). Aquat Conserv Mar Freshw Ecosyst 21:590–600

    Article  Google Scholar 

  • Manghisi A, Le Gall L, Ribera MA, Bonillo C, Garuiulo GM, Morabito M (2014) The Mediterranean endemic new genus Felicinia (Halymeniales, Rhodophyta) recognized by a morphological and phylogenetic integrative approach. Cryptogam Algol 35:221–243

    Article  Google Scholar 

  • Marston M, Villalard-Bohnsack M (2002) Genetic variability and potential sources of Grateloupia doryphora (Halymeniaceae, Rhodophyta), an invasive species in Rhode Island waters (USA). J Phycol 38:649–658

    Article  CAS  Google Scholar 

  • Matocq M, Villablanca F (2001) Low genetic diversity in an endangered species: recent of historic pattern? Biol Conserv 98:61–68

    Article  Google Scholar 

  • Montes M, Rico JM, García-Vázquez E, Borrell YJ (2016) Morphological and molecular methods reveal the Asian alga Grateloupia imbricata (Halymeniaceae) occurs on Cantabrian Sea shores (Bay of Biscay). Phycologia 55:365–370

    Article  Google Scholar 

  • Neiva J, Assis J, Coelho NC, Fernandes F, Pearson GA, Serráo EA (2015) Genes left behind: climate change threatens cryptic genetic diversity in the canopy-forming seaweed Bifurcaria bifurcata. PLoS One 10(7):e0131530. https://doi.org/10.1371/journal.pone.013153

    Article  PubMed  PubMed Central  Google Scholar 

  • Neiva J, Serrão EA, Paulino C, Gouveia L, Want A, Tamigneaux É, Ballenghien Marion, Mauger S, Fouqueau L, Engel-Gautier C, Destombe C, Valero M (2020) Genetic structure of amphi-Atlantic Laminaria digitata (Laminariales, Phaeophyceae) reveals a unique range-edge gene pool and suggests post-glacial colonization of the NW Atlantic. Eur J Phycol. https://doi.org/10.1080/09670262.2020.175005

    Article  Google Scholar 

  • Peng C, Ding H, Tang Z, Guo L, Yang G (2018) Molecular grouping of Grateloupia tissues collected along Chinese coast and microsatellite diversity analysis of G. asiatica. J Ocean Univ China 17:925–931

    Article  Google Scholar 

  • Rodriguez-Prieto C, De Clerck O, Huisman JM, Lin S-M (2018) Systematics of the red algal genus Halymenia (Halymeniaceae, Rhodophyta): characterization of the generitype H. floresii and description of Nesofolia rosea gen. et sp. nov. Eur J Phycol 53:520–536

    Article  CAS  Google Scholar 

  • Schneider CW, Popolizio TR, Kraft LGK, Saunders GW (2019) New species of Galene and Howella gen. nov. (Halymeniaceae, Rhodophyta) from the mesophotic zone off Bermuda. Phycologia 58:690–697

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  Google Scholar 

  • Wang P (1999) Response of western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Mar Geol 156:5–39

    Article  Google Scholar 

  • Yang MY, Kim MS (2015) Taxonomy of Grateloupia (Halymeniales, Rhodophyta) by DNA barcode marker analysis and a description of Pachymeniopsis volvita sp. nov. J Appl Phycol 27:1373–1384

    Article  CAS  Google Scholar 

  • Yang EC, Lee SY, Lee WJ, Boo SM (2009) Molecular evidence for recolonization of Ceramium japonicum (Ceramiaceae, Rhodophyta) on the west coast of Korea after the last glacial maximum. Bot Mar 52:307–315

    Article  CAS  Google Scholar 

  • Yang MY, Yang EC, Kim MS (2020) Genetic diversity hotspot of the amphi-Pacific macroalga Gloiopeltis furcata sensu lato (Gigartinales, Florideophyceae). J Appl Phycol 32:2515–2522

    Article  CAS  Google Scholar 

  • Yang MY, Fujita D, Kim SM (2021a) Phylogeography of Gloiopeltis furcata sensu lato (Gigartinales, Rhodophyta) provides the evidence of glacial refugia in Korea and Japan. Algae 36:13–24

    Article  Google Scholar 

  • Yang MY, Kim SY, Kim MS (2021b) Population genetic structure and phylogeography of co-distributed Pachymeniopsis species (Rhodophyta) along the coast of Korea and Japan. Diversity 13:336

    Article  Google Scholar 

  • Zampiglia M, Bisconti R, Maiorano L, Aloise G, Siclari A, Pellegrino F, Martino G, Pezzarossa A, Chiocchio A, Martino C, Nascetti G, Canestrelli D (2019) Drilling down hotspots of intraspecific diversity to bring them into on-ground conservation of threatened species. Front Ecol Evol 7:205. https://doi.org/10.3389/fevo.2019.00205

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2021 education, research and student guidance grant funded by Jeju National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung Sook Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M.Y., Kim, S.Y. & Kim, M.S. Verification of hotspots of genetic diversity in Korean population of Grateloupia asiatica and G. jejuensis (Rhodophyta) show low genetic diversity and similar geographic distribution. Genes Genom 43, 1463–1469 (2021). https://doi.org/10.1007/s13258-021-01168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-021-01168-y

Keywords

Navigation