Skip to main content
Log in

Cellular and molecular mechanisms of DEET toxicity and disease-carrying insect vectors: a review

  • Review
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Several insects such as mosquitoes, flies, ticks, fleas, lice, and mites are known to serve as vectors for a vast number of pathogens. Many such vectors are hematophagous, and therefore introduce pathogens directly into the host’s bloodstream. Importantly, the capacity of these vectors to spread disease can lead to serious global health crises. Furthermore, crop damage can be exacerbated by pathogen infection and increased insect foraging due to recent global warming.

Methods

Our study categorized insect-associated damage into three groups: animal infection, plant infection, and direct crop damage due to insect foraging. To manage these problems, insect repellents and pesticides have been developed, among which DEET is the most broadly used and studied pest control agent. This review discusses the mode of action and possible mechanisms of DEET action, including olfactory and gustatory mechanisms and central nervous system impairment.

Conclusion

To protect humans from malaria, yellow fever, dengue fever, zika, and filariasis, as well as to reduce economic losses associated with crop damage, considerably more efforts are needed to characterize the interactions between insects and insect repellents/pesticides to develop more potent pest control agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbas G, Arif MJ, Ashfaq M, Aslam M, Saeed S (2010) Host plants, distribution and overwintering of cotton mealybug (Phenacoccussolenopsis; Hemiptera: Pseudococcidae). Int J Agric Biol 12:421–425

    Google Scholar 

  • Afify A, Horlacher B, Roller J, Galizia CG (2014) Different repellents for Aedesaegypti against blood-feeding and oviposition. PLoS One 9:e103765

    PubMed  PubMed Central  Google Scholar 

  • Afify A, Betz JF, Riabinina O, Lahondère C, Potter CJ (2019) Commonly used insect repellents hide human odors from Anopheles mosquitoes. Curr Biol 29(3669–3680):e3665

    Google Scholar 

  • Aldar S, Deshmukh G (2019) Mosquito repellent, prevention is better than cure. Asian J Pharm Sci 9:193–198

    Google Scholar 

  • Ampofo J (1986) Maize stalk borer (Lepidoptera: Pyralidae) damage and plant resistance. Environ Entomol 15:1124–1129

    Google Scholar 

  • Anderson WH (1938) A Key to Separate the Larva of the White-fringed Beetle, NaupactusLeucolomaBoh., from the Larvae of Closely Related Species. United States Department of Agriculture, Bureau of Entomology and Plant

  • Azad A (1990) Epidemiology of murine typhus. Annu Rev Entomol 35:553–570

    CAS  PubMed  Google Scholar 

  • Bagla P (2010) Hardy cotton-munching pests are latest blow to GM crops. American Association for the Advancement of Science

  • Barlow C (1965) Stimulation of oviposition in the seed-corn maggot fly, Hylemyacilicrura (Rond.) (Diptera: Anthomyiidae). Entomol Exp Appl 8:83–95

    Google Scholar 

  • Batallas Huacon RE (2019) The basis for cutworm (Lepidoptera: Noctuidae) integrated pest management: understanding crop–pest interaction and moth community structure in Prairie agroecosystems

  • Bigger J (1930) Notes on the life history of the clover root curculio, Sitonahispidula Fab., in central Illinois. J Econ Entomol 23:334–342

    Google Scholar 

  • Blua MJ, Perring TM, Nuessly GS, Duffus JE, Toscano NC (1994) Seasonal cropping pattern effects on abundance of Bemisiatabaci (Homoptera: Aleyrodidae) and incidence of lettuce infectious yellows virus. Environ Entomol 23:1422–1427

    Google Scholar 

  • Boyd BM, Daniels JC, Austin GT (2008) Predaceous behavior by Helicoverpazea (Boddie)(Lepidoptera: Noctuidae: Heliothinae). J Insect Behav 21:143–146

    Google Scholar 

  • Braack L, de Almeida APG, Cornel AJ, Swanepoel R, De Jager C (2018) Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasites Vectors 11:29

    PubMed  PubMed Central  Google Scholar 

  • Burrows M, Caillaud M, Smith D, Gray S (2007) Biometrical genetic analysis of luteovirus transmission in the aphid Schizaphisgraminum. Heredity 98:106–113

    CAS  PubMed  Google Scholar 

  • Capinera J (2001) Handbook of vegetable pests. Elsevier, Oxford

    Google Scholar 

  • Capinera JL (2008) Encyclopedia of entomology. Springer, Berlin

    Google Scholar 

  • Cardoso JdC, De Almeida MA, Dos Santos E, Da Fonseca DF, Sallum MA, Noll CA, Monteiro HAdO, Cruz AC, Carvalho VL, Pinto EV (2010) Yellow fever virus in Haemagogusleucocelaenus and Aedesserratus mosquitoes, southern Brazil, 2008. Emerg Infect Dis 16:1918

    PubMed Central  Google Scholar 

  • Carriere Y, Degain B, Hartfield K, Nolte KD, Marsh S, Ellers-Kirk C, Van Leeuwen W, Liesner L, Dutilleul P, Palumbo JC (2014) Assessing transmission of crop diseases by insect vectors in a landscape context. J Econ Entomol 107:1–10

    CAS  PubMed  Google Scholar 

  • Chen Y-CD, Dahanukar A (2019) Recent advances in the genetic basis of taste detection in Drosophila. Cell Mol Life Sci 77:1087–1101

    PubMed  Google Scholar 

  • Chen LH, Hamer DH (2016) Zika virus: rapid spread in the western hemisphere. Ann Intern Med 164:613–615

    PubMed  Google Scholar 

  • Chen S, Luetje CW (2012) Identification of new agonists and antagonists of the insect odorant receptor co-receptor subunit. PLoS One 7:e36784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Luetje CW (2013) Phenylthiophenecarboxamide antagonists of the olfactory receptor co-receptor subunit from a mosquito. PLoS One 8:e84575

    PubMed  PubMed Central  Google Scholar 

  • Chen S, Luetje CW (2014) Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit. F1000Res 3:84

    PubMed  PubMed Central  Google Scholar 

  • Chu B, Chui V, Mann K, Gordon MD (2014) Presynaptic gain control drives sweet and bitter taste integration in Drosophila. Curr Biol 24:1978–1984

    CAS  PubMed  Google Scholar 

  • Cilia M, Tamborindeguy C, Fish T, Howe K, Thannhauser T, Gray S (2011) Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. J Virol 85:2148–2166

    CAS  PubMed  Google Scholar 

  • Corbel V, Stankiewicz M, Bonnet J, Grolleau F, Hougard JM, Lapied B (2006) Synergism between insecticides permethrin and propoxur occurs through activation of presynaptic muscarinic negative feedback of acetylcholine release in the insect central nervous system. Neurotoxicology 27:508–519

    CAS  PubMed  Google Scholar 

  • Corbel V, Stankiewicz M, Pennetier C, Fournier D, Stojan J, Girard E, Dimitrov M, Molgó J, Hougard J-M, Lapied B (2009) Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet. BMC Biol 7:47

    PubMed  PubMed Central  Google Scholar 

  • David BV (2004) General and applied entomology. Tata McGraw-Hill Education,

  • Davis LE, Beckham JD, Tyler KL (2008) North American encephalitic arboviruses. Neurol Clin 26:727–757

    PubMed  PubMed Central  Google Scholar 

  • del Campo ML, Miles CI, Schroeder FC, Mueller C, Booker R, Renwick JA (2001) Host recognition by the tobacco hornworm is mediated by a host plant compound. Nature 411:186–189

    PubMed  Google Scholar 

  • Dennis EJ, Dobosiewicz M, Jin X, Duvall LB, Hartman PS, Bargmann CI, Vosshall LB (2018) A natural variant and engineered mutation in a GPCR promote DEET resistance in C.elegans. Nature 562:119–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis EJ, Goldman OV, Vosshall LB (2019) Aedesaegypti mosquitoes use their legs to sense DEET on contact. Curr Biol 29(1551–1556):e1555

    Google Scholar 

  • Dietrich CF, Chaubal N, Hoerauf A, Kling K, Piontek MS, Steffgen L, Mand S, Dong Y (2019) Review of dancing parasites in lymphatic filariasis. Ultrasound Int Open 5:E65–E74

    PubMed  PubMed Central  Google Scholar 

  • Ditzen M, Pellegrino M, Vosshall LB (2008) Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319:1838–1842

    CAS  PubMed  Google Scholar 

  • Dogan E, Ayres J, Rossignol P (1999) Behavioural mode of action of deet: inhibition of lactic acid attraction. Med Vet Entomol 13:97–100

    CAS  PubMed  Google Scholar 

  • Dunipace L, Meister S, McNealy C, Amrein H (2001) Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr Biol 11:822–835

    CAS  PubMed  Google Scholar 

  • Dyer RE, Rumreich A, Badger LF (1931) Typhus fever: a virus of the typhus type derived from fleas collected from wild rats. Public Health Rep 1896–1970(46):334–338

    Google Scholar 

  • Ebbs ML, Amrein H (2007) Taste and pheromone perception in the fruit fly Drosophilamelanogaster. Pflugers Arch 454:735–747

    CAS  PubMed  Google Scholar 

  • Edelman MH, Spingarn CL, Nauenberg WG, Gregory C (1965) Hymenolepisdiminuta (rat tapeworm) infection in man. Am J Med 38:951–953

    CAS  PubMed  Google Scholar 

  • Feasey N, Wansbrough-Jones M, Mabey DC, Solomon AW (2010) Neglected tropical diseases. Br Med Bull 93:179–200

    PubMed  Google Scholar 

  • Fowler MA, Montell C (2013) Drosophila TRP channels and animal behavior. Life Sci 92:394–403

    CAS  PubMed  Google Scholar 

  • French AS, Sellier M-J, Agha MA, Guigue A, Chabaud M-A, Reeb PD, Mitra A, Grau Y, Soustelle L, Marion-Poll F (2015) Dual mechanism for bitter avoidance in Drosophila. J Neurosci 35:3990–4004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallun R (1977) Genetic basis of Hessian fly epidemics. Ann N Y Acad Sci 287:223–229

    Google Scholar 

  • Garcia LS (1999) Classification of human parasites, vectors, and similar organisms. Clin Infect Dis 29:734–736

    CAS  PubMed  Google Scholar 

  • Gray S, Cilia M, Ghanim M (2014) Circulative, “nonpropagative” virus transmission: an orchestra of virus-, insect-, and plant-derived instruments. Advances in virus research, vol 89. Elsevier, Oxford, pp 141–199

    Google Scholar 

  • Grove DI, Davis RS (1978) Serological diagnosis of bancroftian and malayan filariasis. Am J Trop Med Hyg 27:508–513

    CAS  PubMed  Google Scholar 

  • Gubler DJ (1998) Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis 4:442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gubler D (2009) Vector-borne diseases. Rev Sci Tech 28:583

    CAS  PubMed  Google Scholar 

  • Guo H, Kunwar K, Smith D (2020) Multiple channels of DEET repellency in Drosophila. Pest Manag Sci 76:880–887

    CAS  PubMed  Google Scholar 

  • Guruju L Background of lymphatic filariasis

  • Gutierrez A, Denton W, Shade R, Maltby H, Burger T, Moorehead G (1974) The within-field dynamics of the cereal leaf beetle (Oulemamelanopus (L.)) in wheat and oats. J Anim Ecol 43:627–640

    Google Scholar 

  • Hamilton LJ, Hollingsworth RG, Sabado-Halpern M, Manoukis NC, Follett PA, Johnson MA (2019) Coffee berry borer (Hypothenemushampei)(Coleoptera: Curculionidae) development across an elevational gradient on Hawai ‘i Island: applying laboratory degree-day predictions to natural field populations. PLoS One 14:e0218321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heck M (2018) Insect transmission of plant pathogens: a systems biology perspective. MSystems 3:e00168–e1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrichs E (2019) Sustainable rice pest management: the role of agricultural policies. Sustain Glob Food Secur Nexus Sci Policy 20:324

    Google Scholar 

  • Horowitz AR, Ghanim M, Roditakis E, Nauen R, Ishaaya I (2020) Insecticide resistance and its management in Bemisiatabaci species. J Pest Sci 93:893–910

    Google Scholar 

  • Ikegami T (2012) Molecular biology and genetic diversity of Rift Valley fever virus. Antiviral Res 95:293–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong YT, Shim J, Oh SR, Yoon HI, Kim CH, Moon SJ, Montell C (2013) An odorant-binding protein required for suppression of sweet taste by bitter chemicals. Neuron 79:725–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PL, Pask GM, Romaine IM, Taylor RW, Reid PR, Waterson AG, Sulikowski GA, Zwiebel LJ (2012) Allosteric antagonism of insect odorant receptor ion channels. PLoS One 7:e30304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, Garrity PA (2010) Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464:597–600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katz TM, Miller JH, Hebert AA (2008) Insect repellents: historical perspectives and new developments. J Am Acad Dermatol 58:865–871

    PubMed  Google Scholar 

  • Kepchia D, Moliver S, Chohan K, Phillips C, Luetje CW (2017) Inhibition of insect olfactory behavior by an airborne antagonist of the insect odorant receptor co-receptor subunit. PLoS One 12:e0177454

    PubMed  PubMed Central  Google Scholar 

  • Kim SH, Lee Y, Akitake B, Woodward OM, Guggino WB, Montell C (2010) Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. PNAS 107:8440–8445

    CAS  PubMed  Google Scholar 

  • Klein M, Tumlinson J, Ladd T Jr, Doolittle R (1981) Japanese beetle (Coleoptera: Scarabaeidae): response to synthetic sex attractant plus phenethyl propionate: eugenol. J Chem Ecol 7:1–7

    CAS  PubMed  Google Scholar 

  • Koren G, Matsui D, Bailey B (2003) DEET-based insect repellents: safety implications for children and pregnant and lactating women. CMAJ 169:209–212

    PubMed  PubMed Central  Google Scholar 

  • Lamp WO, Miranda D, Culler LE, Alexander LC (2011) Host suitability and gas exchange response of grapevines to potato leafhopper (Hemiptera: Cicadellidae). J Econ Entomol 104:1316–1322

    PubMed  Google Scholar 

  • Lee Y, Poudel S (2014) Taste sensation in Drosophilamelanoganster. Hanyang Med Rev 34:130–136

    CAS  Google Scholar 

  • Lee Y, Kim SH, Montell C (2010) Avoiding DEET through insect gustatory receptors. Neuron 67:555–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Poudel S, Kim Y, Thakur D, Montell C (2018) Calcium taste avoidance in Drosophila. Neuron 97(67–74):e64

    Google Scholar 

  • Ling F, Dahanukar A, Weiss LA, Kwon JY, Carlson JR (2014) The molecular and cellular basis of taste coding in the legs of Drosophila. J Neurosci 34:7148–7164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo WL, Mok KL, Yu Pui Ming SD (2018) Which insect repellents should we choose? Implications from results of local market survey and review of current guidelines. Hong Kong J Emerg Med 25:272–280

    Google Scholar 

  • Löbl I, Smetana A (2007) Catalogue of Palaearctic Coleoptera. Volume 4: Elateroidea-Derodontoidea-Bostrichoidea-Lymexyloidea-Cleroidea-Cucujoidea. Apollo Books, New York

    Google Scholar 

  • Lovejoy RT, Johnson DA (2014) A molecular analysis of herbivory in adults of the invasive bean plataspid, Megacoptacribraria. Southeast Nat 13:663–672

    Google Scholar 

  • Mally R, Korycinska A, Agassiz DJ, Hall J, Hodgetts J, Nuss M (2015) Discovery of an unknown diversity of Leucinodes species damaging Solanaceae fruits in sub-Saharan Africa and moving in trade (Insecta, Lepidoptera, Pyraloidea). ZooKeys 20:117

    Google Scholar 

  • Marsh HO (1917) Life history of Plutella maculipennis, the diamondback moth. J Agric Res 10:1–9

    Google Scholar 

  • Marvaldi AE, Sequeira AS, O'Brien CW, Farrell BD (2002) Molecular and morphological phylogenetics of weevils (Coleoptera, Curculionoidea): do niche shifts accompany diversification? Syst Biol 51:761–785

    PubMed  Google Scholar 

  • Matheny EL Jr (1981) Contrasting feeding habits of pest mole cricket species. J Econ Entomol 74:444–445

    Google Scholar 

  • McEwen PK, New TR, Whittington AE (2007) Lacewings in the crop environment. Cambridge University Press, Cambridge

    Google Scholar 

  • McQuaid CF, van den Bosch F, Szyniszewska A, Alicai T, Pariyo A, Chikoti PC, Gilligan CA (2017) Spatial dynamics and control of a crop pathogen with mixed-mode transmission. PLoS Comput Biol 13:e1005654

    PubMed  PubMed Central  Google Scholar 

  • Merfa MV, Pérez-López E, Naranjo E, Jain M, Gabriel DW, De La Fuente L (2019) Progress and obstacles in culturing ‘CandidatusLiberibacterasiaticus’, the bacterium associated with Huanglongbing. Phytopathology 109:1092–1101

    CAS  PubMed  Google Scholar 

  • Meunier N, Marion-Poll F, Rospars JP, Tanimura T (2003) Peripheral coding of bitter taste in Drosophila. J Neurobiol 56:139–152

    PubMed  Google Scholar 

  • Minnick MF, Anderson BE, Lima A, Battisti JM, Lawyer PG, Birtles RJ (2014) Oroya fever and verruga peruana: bartonelloses unique to South America. PLoS Negl Trop Dis 8:e2919

    PubMed  PubMed Central  Google Scholar 

  • Montell C (2009) A taste of the Drosophila gustatory receptors. Curr Opin Neurobiol 19:345–353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moseyko AG, Kirejtshuk AG, Nel A (2010) New genera and new species of leaf beetles (Coleoptera: Polyphaga: Chrysomelidae) from Lowermost Eocene French amber. Annales de la Société entomologique de France, vol 1–2. Taylor & Francis, New York, pp 116–123

    Google Scholar 

  • Moss J (1996) Synergism of toxicity of N, N-diethyl-m-toluamide to German cockroaches (Orthoptera: Blattellidae) by hydrolytic enzyme inhibitors. J Econ Entomol 89:1151–1155

    CAS  PubMed  Google Scholar 

  • Mound L (1997) Biological diversity. Thrips Crop Pests 20:197–215

    Google Scholar 

  • Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366:1561–1577

    CAS  PubMed  Google Scholar 

  • Nimbalkar S, Borle M (1970) Efficacy of different insecticides against pupae of cabbage leaf miner,Liriomyzabrassicae Riley. Indian J Entomol 32:290–292

    CAS  Google Scholar 

  • Padgett JJ, Jacobsen KH (2008) Loiasis: African eye worm. Trans R Soc Trop Med Hyg 102:983–989

    PubMed  Google Scholar 

  • Pavuk DM, Williams CE (2018) Simultaneous parasitism of field-collected green cloverworm, Hypenascabra (Lepidoptera: Noctuidae) larvae by endoparasitioids and an entomopathogenic fungus. Great Lakes Entomol 36:4

    Google Scholar 

  • Pellegrino M, Steinbach N, Stensmyr MC, Hansson BS, Vosshall LB (2011) A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature 478:511–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pena JE, Waddill V (1983) Larval and egg parasitism of Keiferialycopersicella (Walsingham)(Lepidoptera: Gelechiidae) in southern Florida tomato fields. Environ Entomol 12:1322–1326

    Google Scholar 

  • Penn RL (2015) 229—Francisellatularensis (Tularemia). Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. JAMA 20:2590–2602

    Google Scholar 

  • Pennetier C, Corbel V, Hougard J-M (2005) Combination of a non-pyrethroid insecticide and a repellent: a new approach for controlling knockdown-resistant mosquitoes. Am J Trop Med Hyg 72:739–744

    CAS  PubMed  Google Scholar 

  • Pialoux G, Gaüzère B-A, Jauréguiberry S, Strobel M (2007) Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7:319–327

    PubMed  Google Scholar 

  • Rice KB, Bergh CJ, Bergmann EJ, Biddinger DJ, Dieckhoff C, Dively G, Fraser H, Gariepy T, Hamilton G, Haye T (2014) Biology, ecology, and management of brown marmorated stink bug (Hemiptera: Pentatomidae). J Integr Pest Manag 5:A1–A13

    Google Scholar 

  • Rimal S, Lee Y (2018) The multidimensional ionotropic receptors of Drosophilamelanogaster. Insect Mol Biol 27:1–7

    CAS  PubMed  Google Scholar 

  • Rimal S, Sang J, Poudel S, Thakur D, Montell C, Lee Y (2019) Mechanism of acetic acid gustatory repulsion in Drosophila. Cell Rep 26(1432–1442):e1434

    Google Scholar 

  • Robertson HM, Warr CG, Carlson JR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophilamelanogaster. PNAS 100:14537–14542

    CAS  PubMed  Google Scholar 

  • Rodhain F (2015) Insects as vectors: systematics and biology. Rev Sci Tech 34(83–96):67–82

    Google Scholar 

  • Sanford JL, Shields VD, Dickens JC (2013) Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedesaegypti. Naturwissenschaften 100:269–273

    CAS  PubMed  Google Scholar 

  • Sarwar M (2016) Food habits or preferences and protecting or encouraging of native ladybugs (Coleoptera: Coccinellidae). Int J Zool Stud 1:13–18

    Google Scholar 

  • Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006

    CAS  PubMed  Google Scholar 

  • Schmidt GD, Roberts LS, Janovy J (1977) Foundations of parasitology. Mosby, Saint Louis

    Google Scholar 

  • Shim J, Lee Y, Jeong YT, Kim Y, Lee MG, Montell C, Moon SJ (2015) The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nat Commun 6:1–8

    Google Scholar 

  • Simón F, Siles-Lucas M, Morchón R, González-Miguel J, Mellado I, Carretón E, Montoya-Alonso JA (2012) Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clin Microbiol Rev 25:507–544

    PubMed  PubMed Central  Google Scholar 

  • Smith H, Capinera J, Pena J, Linbo-Terhaar B (1994) Parasitism of pickleworm and melonworm (Lepidoptera: Pyralidae) by Cardiochilesdiaphaniae (Hymenoptera: Braconidae). Environ Entomol 23:1283–1293

    Google Scholar 

  • Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT (2000) Japanese encephalitis. J Neurol Neurosurg Psychiatry 68:405–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Speyer ER (1927) An important parasite of the greenhouse white-fly (Trialeurodesvaporariorum, Westwood). Bull Entomol Res 17:301–308

    Google Scholar 

  • Steele LD, Sun W, Valero MC, Ojo JA, Seong KM, Coates BS, Margam VM, Tamò M, Pittendrigh BR (2017) The mitogenome of the brown pod-sucking bug ClavigrallatomentosicollisStäl (Hemiptera: Coreidae). Agri Gene 5:27–36

    Google Scholar 

  • Stiller M (2009) Leafhoppers associated with grasslands of South Africa. Part I Grassland Biome endemics. Grassroots 9:13–15

    Google Scholar 

  • Swale DR, Sun B, Tong F, Bloomquist JR (2014) Neurotoxicity and mode of action of N,N-diethyl-meta-toluamide (DEET). PLoS One 9:e103713

    PubMed  PubMed Central  Google Scholar 

  • Syed Z, Leal WS (2008) Mosquitoes smell and avoid the insect repellent DEET. PNAS 105:13598–13603

    CAS  PubMed  Google Scholar 

  • Syed Z, Pelletier J, Flounders E, Chitolina RF, Leal WS (2011) Generic insect repellent detector from the fruit fly Drosophilamelanogaster. PLoS One 6:e17705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanowitz HB, Kirchhoff LV, Simon D, Morris SA, Weiss LM, Wittner M (1992) Chagas' disease. Clin Microbiol Rev 5:400–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor MJ, Hoerauf A, Bockarie M (2010) Lymphatic filariasis and onchocerciasis. Lancet 376:1175–1185

    PubMed  Google Scholar 

  • Tindall KV, Stewart S, Musser F, Lorenz G, Bailey W, House J, Henry R, Hastings D, Wallace M, Fothergill K (2010) Distribution of the long-horned beetle, Dectestexanus, in soybeans of Missouri, Western Tennessee, Mississippi, and Arkansas. J Insect Sci 10:178

    PubMed  PubMed Central  Google Scholar 

  • Tompkins LS (1996) Bartonella species infections, including cat-scratch disease, trench fever, and bacillary angiomatosis–what molecular techniques have revealed. West J Med 164:39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torrion J, Setiyono TD, Cassman K, Specht J (2011) Soybean phenology simulation in the north-central United States. Agron J 103:1661–1667

    Google Scholar 

  • Tsitoura P, Koussis K, Iatrou K (2015) Inhibition of Anophelesgambiae odorant receptor function by mosquito repellents. J Biol Chem 290:7961–7972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Naters WVDG, Carlson JR (2006) Insects as chemosensors of humans and crops. Nature 444:302–307

    Google Scholar 

  • Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533

    CAS  PubMed  Google Scholar 

  • Walls J, Rajotte E, Rosa C (2019) The past, present, and future of barley yellow dwarf management. Agriculture 9:23

    CAS  Google Scholar 

  • Want BJ (1974) An interesting and successful organic experiment. J Chem Educ 51:631

    Google Scholar 

  • Warrell DA (2019) Louse-borne relapsing fever (Borreliarecurrentis infection). Epidemiol Infect 147:e106

    PubMed  PubMed Central  Google Scholar 

  • Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi P-Y, Vasilakis N (2016) Zika virus: History, emergence, biology, and prospects for control. Antiviral Res 130:69–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR (2011) The molecular and cellular basis of bitter taste in Drosophila. Neuron 69:258–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011

    CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1950) The principles of insect physiology. The principles of insect physiology

  • Xu P, Choo Y-M, De La Rosa A, Leal WS (2014) Mosquito odorant receptor for DEET and methyl jasmonate. PNAS 111:16592–16597

    CAS  PubMed  Google Scholar 

  • Zhang YV, Ni J, Montell C (2013) The molecular basis for attractive salt-taste coding in Drosophila. Science 340:1334–1338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JJ, Cermak SC, Kenar JA, Brewer G, Haynes KF, Boxler D, Baker PD, Wang D, Wang C, Li AY (2018) Better than DEET repellent compounds derived from coconut oil. Sci Rep 8:1–12

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grants to Y. L. from the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A2B6004202). B.S. was supported by the Global Scholarship Program for Foreign Graduate Students at Kookmin University in Korea.

Author information

Authors and Affiliations

Authors

Contributions

YL and BS designed and wrote the manuscript.

Corresponding author

Correspondence to Youngseok Lee.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, B., Lee, Y. Cellular and molecular mechanisms of DEET toxicity and disease-carrying insect vectors: a review. Genes Genom 42, 1131–1144 (2020). https://doi.org/10.1007/s13258-020-00991-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-00991-z

Keywords

Navigation