Skip to main content
Log in

Cytogenetic analysis of Bienertia sinuspersici Akhani as the first step in genome sequencing

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

C4 plants are efficient in suppressing photorespiration and enhancing carbon gain as compared to C3 plants. Bienertia sinuspersici Akhani is one of the few species in the family Amaranthaceae that can perform C4 photosynthesis within individual chlorenchyma cells, without the conventional Kranz anatomy in its leaf. This plant is salt-tolerant and is well-adapted to thrive in hot and humid climates. To date, there have been no reported cytogenetic analyses yet on this species.

Objective

This study aims to provide a cytogenetic analysis of B. sinuspersici as the first step in genome sequencing.

Methods

Fluorescence in situ hybridization (FISH) karyotype analysis was conducted using the metaphase chromosomes of B. sinuspersici probed with 5S and 45S rDNA and Arabidopsis-type telomeric repeats.

Results

Results of the cytogenetic analysis confirmed that B. sinuspersici has 2n = 2x = 18 consisting of nine pairs of metacentric chromosomes. Two loci of 45S rDNA were found on the distal regions of the short arm of chromosome 7. Nine loci of 5S rDNA were found in the pericentromeric regions of chromosomes 1, 3, 4, 6, and 8, which also colocalized with Arabidopsis-type telomeric repeats; while four loci in the interstitial regions of chromosome 5 and 8 can be observed. The single locus of 5S rDNA that was found in chromosome 8 appears to be hemizygous.

Conclusion

The FISH karyotype analysis, based on the combination of rDNAs, telomeric tandem repeat markers and C0t DNA chromosome landmarks, allowed efficient chromosome identification and provided useful information in characterizing the genome of B. sinuspersici.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

DNA:

Deoxyribonucleic acid

dNMP:

Deoxyribonucleoside monophosphate

FISH:

Fluorescence in situ hybridization

GISH:

Genomic in situ hybridization

NOR:

Nucleolus organiser regions

rDNA:

Ribosomal RNA

rpm:

Revolutions per minute

References

  • Akhani H, Barroca J, Koteeva N, Voznesenskaya E, Franceschi V, Edwards G, Ghaffari SM, Ziegler H (2005) Bienertia sinuspersici (Chenopodiaceae): a new species from Southwest Asia and discovery of a third terrestrial C4 plant without Kranz anatomy. Syst Bot 30:290–301

    Google Scholar 

  • Allen G, Flores-Vergara M, Krasynanski S, Kumar S, Thompson W (2006) A modified protocol for rapid DNA isolation from plant tissues uing cetyltrimethylammonium bromide. Nat Protoc 1:2320

    CAS  PubMed  Google Scholar 

  • Armstrong SJ, Franklin FCH, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114:4207–4217

    CAS  PubMed  Google Scholar 

  • Ashley T, Ward D (1993) A “hot spot” of recombination coincides with an interstitial telomeric sequence in the Armenian hamster. Cytogenet Genome Res 62:169–171

    CAS  Google Scholar 

  • Biémont C, Vieira C (2006) Genetics—junk DNA as an evolutionary force. Nature 443:521–524

    PubMed  Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161:529–540

    CAS  PubMed  Google Scholar 

  • Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. Method Enzymol 29:363–418

    CAS  Google Scholar 

  • Chang SB, Yang TJ, Datema E, van Vugt J, Vosman B, Kuipers A, Meznikova M, Szinay D, Lankhorst RK, Jacobsen E, de Jong H (2008) FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosome Res 16:919–933

    CAS  PubMed  Google Scholar 

  • Copenhaver GP, Pikaard CS (1996) RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J 9:259–272

    CAS  PubMed  Google Scholar 

  • Cuyacot AR, Won SY, Park SK, Sohn S-H, Lee J, Kim JS, Kim HH, Lim KB, Hwang YJ (2016) The chromosomal distribution of repetitive DNA sequences in Chrysanthemum boreale revealed a characterization in its genome. Sci Hort 198:438–444

    CAS  Google Scholar 

  • De Melo NF, Guerra M (2003) Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann Bot 92:309–316

    PubMed  Google Scholar 

  • Devi J, Ko J, Seo B (2005) FISH and GISH: modern cytogenetic techniques. Indian J Biotechnol 4:307–315

    CAS  Google Scholar 

  • Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H (2014) Advances in plant chromosome genomics. Biotechnol Adv 32:122–136

    PubMed  Google Scholar 

  • Dover G (1994) Concerted evolution, molecular drive and natural selection. Curr Biol 4:1165–1166

    CAS  PubMed  Google Scholar 

  • Dvořáčková M, Rossignol P, Shaw PJ, Koroleva OA, Doonan JH, Fajkus J (2010) AtTRB1, a telomeric DNA-binding protein from Arabidopsis, is concentrated in the nucleolus and shows highly dynamic association with chromatin. Plant J 61:637–649

    PubMed  Google Scholar 

  • Fuchs J, Brandes A, Schubert I (1995) Telomere sequence localization and karyotype evolution in higher plants. Plant Syst Evol 196:227–241

    CAS  Google Scholar 

  • Fukui K (1990) Localization of rRNA genes on rice chromosomes. Rice Biotech Quart 1:18–19

    Google Scholar 

  • Galián JA, Rosato M, Rosselló J (2012) Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba. Heredity 108:640

    PubMed  PubMed Central  Google Scholar 

  • Gan Y, Liu F, Chen D, Wu Q, Qin Q, Wang C, Wang K (2013) Chromosomal locations of 5S and 45S rDNA in Gossypium genus and its phylogenetic implications revealed by FISH. PLoS One 8:e68207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg RB (2001) From cot curves to genomics. How gene cloning established new concepts in plant biology. Plant Physiol 125:4–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graham GJ (2001) Cot analysis: single-copy versus repetitive DNA. Encyclopedia of life science. John Wiley & Sons Ltd, USA

    Google Scholar 

  • Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490

    CAS  Google Scholar 

  • He Q, Cai Z, Hu T, Liu H, Bao C, Mao W, Jin W (2015) Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). BMC Plant Biol 15:105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heslop-Harrison J (2000) Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 12:617–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hizume M, Shibata F, Matsusaki Y, Kondo T (2000) Chromosomal localization of telomere sequence repeats in five gymnosperm species. Chromosome Sci 4:39–42

    CAS  Google Scholar 

  • Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet 105:491–497

    PubMed  Google Scholar 

  • Hwang YJ (2015) Chromosome characterization of Lilium tigrinum based on C0t DNA analysis. Flower Res J 23:250–254

    Google Scholar 

  • Hwang YJ, Kim HH, Kwon SJ, Yang T-J, Ko HC, Park BS, Chung JD, Lim K-B (2009) Karyotype analysis of three Brassica species using five different repetitive DNA markers by fluorescence in situ hybridization. Korean J Hortic Sci Technol 27:456–463

    CAS  Google Scholar 

  • Hwang YJ, Kim HH, Kim JB, Lim KB (2011) Karyotype analysis of Lilium tigrinum by FISH. Hortic Environ Biotechnol 52:292–297

    Google Scholar 

  • Iovene M, Wielgus SM, Simon PW, Buell CR, Jiang J (2008) Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 180:1307–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamstra SA, Kuipers AG, Jeu MJD, Ramanna M, Jacobsen E (1997) Physical localisation of repetitive DNA sequences in Alstroemeria: karyotyping of two species with species-specific and ribosomal DNA. Genome 40:652–658

    CAS  PubMed  Google Scholar 

  • Katinka MD, Bourgain FM (1992) Interstitial telomeres are hotspots for illegitimate recombination with DNA molecules injected into the macronucleus of Paramecium primaurelia. EMBO J 11:725–732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato A, Vega JM, Han F, Lamb JC, Birchler JA (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8:148–154

    CAS  PubMed  Google Scholar 

  • Kolano B, Tomczak H, Molewska R, Jellen EN, Maluszynska J (2012) Distribution of 5S and 35S rRNA gene sites in 34 Chenopodium species (Amaranthaceae). Bot J Linn Soc 170:220–231

    Google Scholar 

  • Lakshmanan PS, Van Laere K, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E, Khrustaleva L (2015) Karyotype analysis and visualization of 45S rRNA genes using fluorescence in situ hybridization in aroids (Araceae). Comp Cytogenet 9:145

    PubMed  PubMed Central  Google Scholar 

  • Lamoureux D, Peterson DG, Li W, Fellers JP, Gill BS (2005) The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48:1120–1126

    CAS  PubMed  Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Google Scholar 

  • Li J, He S, Zhang L, Hu Y, Yang F, Ma L, Huang J, Li L (2012) Telomere and 45S rDNA sequences are structurally linked on the chromosomes in Chrysanthemum segetum L. Protoplasma 249:207–215

    CAS  PubMed  Google Scholar 

  • Liehr T, Starke H, Weise A, Lehrer H, Claussen U (2004) Multicolor FISH probe sets and their applications. Histol Hstopathol 19:229–237

    CAS  Google Scholar 

  • Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim J, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim Y, Park BS (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49(2):173–183

    CAS  PubMed  Google Scholar 

  • Mancia FH, Sohn SH, Ahn YK, Kim DS, Kim JS, Kwon YS, Kim CW, Lee TH, Hwang YJ (2015) Distribution of various types of repetitive DNAs in Allium cepa L. based on dual color FISH. Hortic Environ Biotechnol 56:793–799

    CAS  Google Scholar 

  • Mártonfiová L (2013) A method of standardization of chromosome length measurement. Caryologia 4:304–312

    Google Scholar 

  • Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinform 12:164–171

    Google Scholar 

  • Meyne J, Baker RJ, Hobart HH, Hsu T, Ryder OA, Ward OG, Wiley JE, Wurster-Hill DH, Yates TL, Moyzis RK (1990) Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99:3–10

    CAS  PubMed  Google Scholar 

  • Ohta T (1984) Some models of gene conversion for treating the evolution of multigene families. Genetics 106:517–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okagaki RJ, Phillips RL (2004) Maize DNA-sequencing strategies and genome organization. Genome Biol 5:223

    PubMed  PubMed Central  Google Scholar 

  • Page BT, Wanous MK, Birchler JA (2001) Characterization of a maize chromosome 4 centromeric sequence: evidence for an evolutionary relationship with the B chromosome centromere. Genetics 159:291–302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer LE, Rabinowicz PD, O’Shaughnessy AL, Balija VS, Nascimento LU et al (2003) Maize genome sequencing by methylation filtrations. Science 302:2115–2117

    PubMed  Google Scholar 

  • Park J, Okita TW, Edwards GE (2010) Expression profiling and proteomic analysis of isolated photosynthetic cells of the non-Kranz C4 species Bienertia sinuspersici. Funct Plant Biol 37:1–13

    CAS  Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, Nagel A, Jiang N, Tibbitts DC, Wessler SR, Paterson AH (2002a) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12:795–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson DG, Wessler SR, Paterson AH (2002b) Efficient capture of unique sequences from eukaryotic genomes. Trends Genet 18:547–550

    CAS  PubMed  Google Scholar 

  • Plohl M (2010) Those mysterious sequences of satellite DNAs. Period Biol 112:403–410

    Google Scholar 

  • Presting GG, Frary A, Pillen K, Tanksley SD (1996) Telomere-homologous sequences occur near the centromeres of many tomato chromosomes. Mol Gen Genet 251:526–531

    CAS  PubMed  Google Scholar 

  • Reddy UK, Aryal N, Islam-Faridi N, Tomason YR, Levi A, Nimmakayala P (2013) Cytomolecular characterization of rDNA distribution in various Citrullus species using fluorescent in situ hybridization. Genet Resour Crop Evol 60:2091–2100

    CAS  Google Scholar 

  • Rho IR, Hwang YJ, Lee HI, Lee C-H, Lim KB (2012) Karyotype analysis using FISH (fluorescence in situ hybridization) in Fragaria. Sci Hortic 136:95–100

    CAS  Google Scholar 

  • Schubert I, Rieger R, Fuchs J (1995) Alteration of basic chromosome number by fusion–fission cycles. Genome 38:1289–1292

    CAS  PubMed  Google Scholar 

  • She C, Liu J, Diao Y, Hu Z, Song Y (2007) The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization. J Genet Genom 34:437–448

    CAS  Google Scholar 

  • Terencio ML, Schneider CH, Gross MC, do Carmo EJ, Nogaroto V, de Almeida MC, Feldberg E (2015) Repetitive sequences: the hidden diversity of heterochromatin in prochilodontid fish. Comp Cytogenet 9:465

    PubMed  PubMed Central  Google Scholar 

  • Thomas H, Harper J, Meredith M, Morgan W, King I (1997) Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hybridization. Genome 40:406–410

    CAS  PubMed  Google Scholar 

  • Timberlake WE (1978) Low repetitive DNA content in Aspergillus nidulans. Science 2026:973–975

    Google Scholar 

  • Torres GA, Gong Z, Iovene M, Hirsch CD, Buell CR, Bryan GL, Novák P, Macas J, Jiang J (2011) Organization and evolution of subtelomeric satellite repeats in the potato genome. Genes Genomes Genetics 1:85–92

    CAS  PubMed  Google Scholar 

  • Upcroft JA, Abedinia M, Upcroft P (2005) Rearranged subtelomeric rRNA genes in Giardia duodenalis. Eukaryot Cell 4(2):484–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waminal NE, Pellerin RJ, Kim N-S, Jayakodi M, Park JY, Yang TJ, Kim HH (2018) Rapid and efficient FISH using pre-labeled oligomer probes. Sci Rep 8:8224

    PubMed  PubMed Central  Google Scholar 

  • Wang T, Wu C, Huang J, Wei W (2007) Karyotyping of Brassica oleracea L. based on rDNA and Cot-1 DNA fluorescence in situ hybridization. Front Biol China 2:403–407

    Google Scholar 

  • Waring M, Britten RJ (1966) Nucleotide sequence repetition: a rapidly reassociating fraction of mouse DNA. Science 154:791–794

    CAS  PubMed  Google Scholar 

  • Wei WH, Zhang SF, Wang LJ, Chen B, Wu XM, Song YC (2007) Karyotyping of Brassica oleracea L. based on cot-1 and ribosomal DNAs. Bot Stud 48:255–261

    CAS  Google Scholar 

  • Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F et al (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120

    PubMed  Google Scholar 

  • Younis A, Ramzan F, Hwang YJ, Lim KB (2015) FISH and GISH: molecular cytogenetic tools and their applications in ornamental plants. Plant Cell Rep 34:1477–1488

    CAS  PubMed  Google Scholar 

  • Yuan YW, Wessler SR (2011) The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. PNAS 108:7884–7889

    CAS  PubMed  Google Scholar 

  • Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-Cot sequence analysis of the maize genome. Plant J 34:249–255

    CAS  PubMed  Google Scholar 

  • Zakian VA (1995) Telomeres: beginning to understand the end. Science 270:1601–1607

    CAS  PubMed  Google Scholar 

  • Zhang ZT, Yang SQ, Li ZA, Zhang YX, Wang YZ, Cheng CY, Lou QF (2016) Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis. Genome 59:449–457

    CAS  PubMed  Google Scholar 

  • Zhdanova NS, Minina JM, Karamisheva TV, Draskovic I, Rubtsov NB, Londoño-Vallejo JA (2007) The very long telomeres in Sorex granarius (Soricidae, Eulipothyphla) contain ribosomal DNA. Chromosom Res 15(7):881–890

    CAS  Google Scholar 

  • Zhou HC, Pellerin RJ, Waminal NE, Yang T-J, Kim HH (2019) Pre-labelled oligo probe-FISH karyotype analyses of four Araliaceae species using rDNA and telomeric repeat. Genes Genomics 41:839–847

    CAS  PubMed  Google Scholar 

  • Zwick MS, Hanson RE, Islam-Faridi MN, Stelly DM, Wing RA, Price HJ, McKnight TD (1997) A rapid procedure for the isolation of C0t-1 DNA from plants. Genome 40:138–142

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01095307) of the Rural Development Administration Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Jung Hwang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevilleno, S.S., Ju, Y.H., Kim, J.S. et al. Cytogenetic analysis of Bienertia sinuspersici Akhani as the first step in genome sequencing. Genes Genom 42, 337–345 (2020). https://doi.org/10.1007/s13258-019-00908-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00908-5

Keywords

Navigation