Skip to main content
Log in

Association between CD53 genetic polymorphisms and tuberculosis cases

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Tetraspanin proteins are expressed in various immune cells, and they play an important role in tuberculosis formation. CD53 is a protein in the tetraspanin family that is expressed in many white blood cells. In particular, it plays an important role in cytokine regulation and interaction between natural killer (NK) cells and antigen-presenting cells (APCs).

Objectives

The purpose of this study was to investigate whether the single nucleotide polymorphisms (SNPs) difference of CD53 gene could affect TB case.

Methods

In this study, we investigated the effects of genetic polymorphism of CD53 on the pathogenesis of tuberculosis based on Korean Association Resource (KARE) data. Logistic regression analysis was used to determine the effect of SNPs of the CD53 gene on tuberculosis in TB cases and control groups. We also examined the effect of SNPs on tuberculosis in gene expression.

Results

Eight SNPs of CD53 were found to be associated with TB case. The SNP showing the greatest significance in this association was rs4839583 (odds ratio = 0.83, 95% confidence interval 0.72–0.96, p = 0.010). These genetic variants might be involved in cytokine regulation through the Jun pathway, and are thought to affect the immune responses and pathogenesis of TB.

Discussion

CD53 is a type of tetraspanin that is expressed on various immune cells. In this study, we identified eight statistically significant SNPs in CD53 gene, confirming that it could be involved in the regulation of CD53 gene expression.

Conclusion

Associations between genetic variants and tuberculosis facilitated better understanding of the differences in the incidence of tuberculosis in various populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bos SD, Lakenberg N, van der Breggen R, Houwing-Duistermaat JJ, Kloppenburg M, de Craen AJ, Beekman M, Meulenbelt I, Slagboom PE (2010) A genome-wide linkage scan reveals CD53 as an important regulator of innate TNF-alpha levels. Eur J Hum Genet 18:953–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosca L, Lazo PA (1994) Induction of nitric oxide release by MRC OX-44 (anti-CD53) through a protein kinase C-dependent pathway in rat macrophages. J Exp Med 179:1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Chimusa ER, Zaitlen N, Daya M, Moller M, van Helden PD, Mulder NJ, Price AL, Hoal EG (2014) Genome-wide association study of ancestry-specific TB risk in the South African coloured population. Hum Mol Genet 23:796–809

    Article  CAS  PubMed  Google Scholar 

  • Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, Yoon D, Lee MH, Kim DJ, Park M et al (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41:527–534

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  CAS  PubMed  Google Scholar 

  • International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796

    Article  CAS  Google Scholar 

  • Lee HM, Shin DM, Kim KK, Lee JS, Paik TH, Jo EK (2009) Roles of reactive oxygen species in CXCL8 and CCL2 expression in response to the 30-kDa antigen of Mycobacterium tuberculosis. J Clin Immunol 29:46–56

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Bae S, Jang J, Choi BW, Park CS, Park JS, Lee SH, Yoon Y (2013) CD53, a suppressor of inflammatory cytokine production, is associated with population asthma risk via the functional promoter polymorphism -1560 C> T. Biochim Biophys Acta 1830:3011–3018

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34:816–834

    Article  PubMed  PubMed Central  Google Scholar 

  • Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. FASEB J 11:428–442

    Article  CAS  PubMed  Google Scholar 

  • Mahasirimongkol S, Yanai H, Mushiroda T, Promphittayarat W, Wattanapokayakit S, Phromjai J, Yuliwulandari R, Wichukchinda N, Yowang A, Yamada N et al (2012) Genome-wide association studies of tuberculosis in Asians identify distinct at-risk locus for young tuberculosis. J Hum Genet 57:363–367

    Article  CAS  PubMed  Google Scholar 

  • Moller M, Hoal EG (2010) Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis (Edinb) 90:71–83

    Article  CAS  Google Scholar 

  • Mollinedo F, Fontan G, Barasoain I, Lazo PA (1997) Recurrent infectious diseases in human CD53 deficiency. Clin Diagn Lab Immunol 4:229–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mootoo A, Stylianou E, Arias MA, Reljic R (2009) TNF-alpha in tuberculosis: a cytokine with a split personality. Inflamm Allergy Drug Targets 8:53–62

    Article  CAS  PubMed  Google Scholar 

  • Omae Y, Toyo-Oka L, Yanai H, Nedsuwan S, Wattanapokayakit S, Satproedprai N, Smittipat N, Palittapongarnpim P, Sawanpanyalert P, Inunchot W et al (2017) Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis. J Hum Genet 62:1015–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parthasarathy V, Martin F, Higginbottom A, Murray H, Moseley GW, Read RC, Mal G, Hulme R, Monk PN, Partridge LJ (2009) Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells. Immunology 127:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters W, Ernst JD (2003) Mechanisms of cell recruitment in the immune response to Mycobacterium tuberculosis. Microbes Infect 5:151–158

    Article  CAS  PubMed  Google Scholar 

  • Rabbee N, Speed TP (2006) A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 22:7–12

    Article  CAS  PubMed  Google Scholar 

  • Seu L, Sun JJ, Schaaf KR, Duverger AE, Kutsch O, Goepfert PA (2016) The tetraspanin CD151 is an activation molecule that characterizes M. tuberculosis- specific effector CD4+ T cells. J Immunol 196:65.9

    Google Scholar 

  • Sobota RS, Stein CM, Kodaman N, Scheinfeldt LB, Maro I, Wieland-Alter W, Igo RP Jr, Magohe A, Malone LL, Chervenak K et al (2016) A locus at 5q33.3 confers resistance to tuberculosis in highly susceptible individuals. Am J Hum Genet 98:514–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thye T, Vannberg FO, Wong SH, Owusu-Dabo E, Osei I, Gyapong J, Sirugo G, Sisay-Joof F, Enimil A, Chinbuah MA et al (2010) Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nat Genet 42:739–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thye T, Owusu-Dabo E, Vannberg FO, van Crevel R, Curtis J, Sahiratmadja E, Balabanova Y, Ehmen C, Muntau B, Ruge G et al (2012) Common variants at 11p13 are associated with susceptibility to tuberculosis. Nat Genet 44:257–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todros-Dawda I, Kveberg L, Vaage JT, Inngjerdingen M (2014) The tetraspanin CD53 modulates responses from activating NK cell receptors, promoting LFA-1 activation and dampening NK cell effector functions. PLoS One 9:e97844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Eijk EA, van de Vosse E, Vandenbroucke JP, van Dissel JT (2007) Heredity versus environment in tuberculosis in twins: the 1950s United Kingdom Prophit Survey Simonds and Comstock revisited. Am J Respir Crit Care Med 176:1281–1288

    Article  PubMed  Google Scholar 

  • Wisdom R, Johnson RS, Moore C (1999) c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 18:188–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yunta M, Lazo PA (2003) Apoptosis protection and survival signal by the CD53 tetraspanin antigen. Oncogene 22:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Yunta M, Oliva JL, Barcia R, Horejsi V, Angelisova P, Lazo PA (2002) Transient activation of the c-Jun N-terminal kinase (JNK) activity by ligation of the tetraspan CD53 antigen in different cell types. Eur J Biochem 269:1012–1021

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (2017R1C1B5016589).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangjung Park.

Ethics declarations

Conflict of interest

Hyun-Seok Jin, Jang-Eun Cho and Sangjung Park declare that they have no conflict of interest.

Ethical approval

This study had been approved by the institutional review board of the Korean National Institute of Health (KNIH) and Hoseo University (1041231-170221-HR-055-01). Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, HS., Cho, JE. & Park, S. Association between CD53 genetic polymorphisms and tuberculosis cases. Genes Genom 41, 389–395 (2019). https://doi.org/10.1007/s13258-018-0764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0764-3

Keywords

Navigation