Skip to main content
Log in

Transcriptomic profiling of soybean in response to UV-B and Xanthomonas axonopodis treatment reveals shared gene components in stress defense pathways

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Soybean (Glycine max [L.]) has evolved to survive under abiotic and biotic stress conditions by utilizing multiple signaling pathways. Although several studies have revealed shared defense signaling pathways in plants, the majority of components at the convergence points of signaling pathways triggered by both abiotic and biotic stress remain poorly understood. Here, we profiled the overall transcriptional responses of soybean to two different types of stress using the UV-B-resistant cultivar, Buseok, and the UV-B-sensitive cultivar, Cheongja 3, as well as two near isogenic lines carrying bacterial leaf pustule (BLP) disease-resistant and -susceptible alleles. We compared transcript abundance and identified genes that commonly respond to UV-B stress and BLP disease. In addition, we surveyed the co-localization of differentially expressed genes (DEGs) and their paralogs with abiotic and biotic stress-related quantitative trait loci (QTLs) on the soybean genome. Among 14 DEGs that respond to both stresses, five DEGs are involved in the jasmonic acid (JA) metabolic pathway, encoding Jasmonate ZIM (Zinc-finger protein expressed in Inflorescence Meristem) domain-containing protein 1 (JAZ 1), a negative regulator of JA signaling. Two DEGs for JAZ 1 were co-localized with biotic stress-related QTLs. One DEG encoding the stress-induced protein starvation-associated message 22 and its two paralogs were co-localized with both abiotic and biotic stress-related QTLs. The results of this study help elucidate general responses to abiotic and biotic stress in soybean, thereby helping breeders improve stress-resistant soybean cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AbuQamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 58:347–360

    Article  CAS  PubMed  Google Scholar 

  • Alkharouf N, Khan R, Matthews B (2004) Analysis of expressed sequence tags from roots of resistant soybean infected by the soybean cyst nematode. Genome 47:380–388

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bhargava S, Sawant K (2013) Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed 132:21–32

    Article  CAS  Google Scholar 

  • Borkotoky S, Saravanan V, Jaiswal A, Das B, Selvaraj S, Murali A, Lakshmi P (2013) The Arabidopsis stress responsive gene database. Int J Plant Genomics. doi:10.1155/2013/949564

    PubMed  PubMed Central  Google Scholar 

  • Boter M, Ruíz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chico JM, Raíces M, Téllez-Iñón MT, Ulloa RM (2002) A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol 128:256–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico J, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano F, Ponce M (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  CAS  PubMed  Google Scholar 

  • Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21(1):131–145. doi:10.1105/tpc.108.064097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowell DN, John ME, Russell D, Amasino RM (1992) Characterization of a stress-induced, developmentally regulated gene family from soybean. Plant Mol Biol 18:459–466

    Article  CAS  PubMed  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballaré CL (2010) Jasmonate-dependent and-independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152:1084–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28(5):591–601. doi:10.1038/emboj.2009.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC (2009) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucl Acids Res. doi:10.1093/nar/gkp798

    Google Scholar 

  • Hashimoto M, Kisseleva L, Sawa S, Furukawa T, Komatsu S, Koshiba T (2004) A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol 45:550–559

    Article  CAS  PubMed  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44(3):321–334

    Article  CAS  PubMed  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431. doi:10.1146/annurev.arplant.59.032607.092953

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Kang YJ, Kim DH, Yoon MY, Moon J-K, Kim MY, Van K, Lee S-H (2011) RNA-Seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and-susceptible alleles. DNA Res 18:483–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. doi:10.1186/gb-2013-14-4-r36

    Google Scholar 

  • Kim KD, Yun MY, Shin JH, Kang YJ, Kim MY, Lee S-H (2015) Underlying genetic variation in the response of cultivated and wild soybean to enhanced ultraviolet-B radiation. Euphytica 202:207–217. doi:10.1007/s10681-014-1271-5

    Article  CAS  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RG, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front plant sci 5:207. doi:10.3389/fpls.2014.00207

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulcheski FR, de Oliveira LF, Molina LG, Almerão MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino-Guimarães FC (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12:307. doi:10.1186/1471-2164-12-307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18(4):263–276. doi:10.1093/dnares/dsr015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    Article  CAS  PubMed  Google Scholar 

  • Lytvyn DI, Yemets AI, Blume YB (2010) UV-B overexposure induces programmed cell death in a BY-2 tobacco cell line. Environ Exp Bot 68:51–57. doi:10.1016/j.envexpbot.2009.11.004

    Article  CAS  Google Scholar 

  • Mendes GC, Reis PA, Calil IP, Carvalho HH, Aragão FJ, Fontes EP (2013) GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress-and osmotic stress-induced cell death responses through a vacuolar processing enzyme. Proc Natl Acad Sci USA 110:19627–19632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro GL, Marques CS, Costa MD, Reis PA, Alves MS, Carvalho CM, Fietto LG, Fontes EP (2009) Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444:10–23

    Article  CAS  PubMed  Google Scholar 

  • Podzimska-Sroka D, O’Shea C, Gregersen PL, Skriver K (2015) NAC transcription factors in senescence: from molecular structure to function in crops. Plants 4:412–448. doi:10.3390/plants4030412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3(4):458–475. doi:10.3390/plants3040458

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts A, Pimentel H, Trapnell C, Pachter L (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27(17):2325–2329. doi:10.1093/bioinformatics/btr355

    Article  CAS  PubMed  Google Scholar 

  • Santino A, Taurino M, De Domenico S, Bonsegna S, Poltronieri P, Pastor V, Flors V (2013) Jasmonate signaling in plant development and defense response to multiple (a) biotic stresses. Plant Cell Rep 32:1085–1098

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Kim MJ, Park JY, Kim SY, Jeon J, Lee YH, Kim J, Park CM (2010) Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J. 61(4):661–671. doi:10.1111/j.1365-313X.2009.04091.x

    Article  CAS  PubMed  Google Scholar 

  • Simon H-U, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578. doi:10.1038/nprot.2012.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walley JW, Coughlan S, Hudson ME, Covington MF, Kaspi R, Banu G, Harmer SL, Dehesh K (2007) Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet 3:e172

    Article  PubMed Central  Google Scholar 

  • Wang H, Wang H, Shao H-B, Tang XL (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci. doi:10.3389/fpls.2016.00067

    Google Scholar 

  • Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The scfcoi1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14(8):1919–1935. doi:10.1105/tpc.003368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60(13):3781–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the Next Generation BioGreen 21 Program (Code No. PJ01102701), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Ha Lee.

Ethics declarations

Conflict of interest

Min Young Yoon declare that she have no conflict of interest. Moon Young Kim declare that she have no conflict of interest. Jayern Lee declare that he have no conflict of interest. Taeyoung Lee declare that he have no conflict of interest. Kil Hyun Kim declare that he have no conflict of interest. Jungmin Ha declare that he have no conflict of interest. Yong Hwan Kim declare that he have no conflict of interest. Suk-Ha Lee declare that he have no conflict of interest.

Statement of human right and Statement on the welfare of animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, M.Y., Kim, M.Y., Lee, J. et al. Transcriptomic profiling of soybean in response to UV-B and Xanthomonas axonopodis treatment reveals shared gene components in stress defense pathways. Genes Genom 39, 225–236 (2017). https://doi.org/10.1007/s13258-016-0490-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0490-7

Keywords

Navigation