Skip to main content
Log in

Analysis of gene expression profiles from subcutaneous adipose tissue of two pig breeds

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Lipid deposition, especially in subcutaneous (backfat) adipose tissues, is directly related to the meat yield and quality in pork. We hypothesized that differentially expressed genes and their transcription factors play a role in the regulation of adipogenesis in porcine backfat. We identified 136 differentially expressed genes (DEGs) in subcutaneous adipose tissue between two pig breeds, the Korean native pig (KNP) and Yorkshire, using a cDNA microarray. Gene ontology analysis demonstrated that some DEGs are involved in fat metabolism processes such as adipogenesis, adipocyte differentiation, and lipolysis. In addition, we identified the regulatory relationship between DEGs and their transcription factors using in silico and qRT-PCR analysis. Two transcription factors (TEF-1, IRF-7) have positively regulated DEGs in KNP backfat. Three other transcription factors (STAT3, OCT1 and HNF4) are negatively correlated with the DEGs in KNP backfat. Our findings suggest that DEGs and their transcription factors may have a potential role in adipogenesis and/or lipid deposition in backfat tissues between pig breeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cao Y (2007) Angiogenesis modulates adipogenesis and obesity. J. Clin. Invest. 117: 2362–2368.

    Article  PubMed  CAS  Google Scholar 

  • Choe SE, Boutros M, Michelson AM, Church GM and Halfon MS (2005) Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biol. 6: R16.

    Article  PubMed  Google Scholar 

  • Cobanoglu O, Zaitoun I, Chang Y, Shook G and Khatib H (2006) Effects of the signal transducer and activator of transcription 1 (STAT1) gene on milk production traits in Holstein dairy cattle. J. Dairy Sci. 89: 4433–4437.

    Article  PubMed  CAS  Google Scholar 

  • Cope LM, Irizarry RA, Jaffee HA, Wu Z and Speed TP (2004) A benchmark for Affymetrix GeneChip expression measures. Bioinformatics 20: 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Eguchi J, Yan QW, Schones DE, Kamal M, Hsu CH, Zhang MQ, Crawford GE and Rosen ED (2008) Interferon regulatory factors are transcriptional regulators of adipogenesis. Cell Metab. 7: 86–94.

    Article  PubMed  CAS  Google Scholar 

  • Exton JH and Park CR (1969) Control of gluconeogenesis in liver. 3. Effects of L-lactate, pyruvate, fructose, glucagon, epinephrine, and adenosine 3′,5′-monophosphate on gluconeogenic intermediates in the perfused rat liver. J. Biol. Chem. 244: 1424–1433.

    PubMed  CAS  Google Scholar 

  • Greenfield NJ, Kostyukova AS and Hitchcock-DeGregori SE (2005) Structure and tropomyosin binding properties of the N-terminal capping domain of tropomodulin 1. Biophys. J. 88: 372–383.

    Article  PubMed  CAS  Google Scholar 

  • Hausman GJ, Barb CR and Dean RG (2008) Patterns of gene expression in pig adipose tissue: insulin-like growth factor system proteins, neuropeptide Y (NPY), NPY receptors, neurotrophic factors and other secreted factors. Domest. Anim. Endocrinol. 35: 24–34.

    Article  PubMed  CAS  Google Scholar 

  • Hausman GJ and Richardson RL (2004) Adipose tissue angiogenesis. J. Anim. Sci. 82: 925–934.

    PubMed  CAS  Google Scholar 

  • Hochreiter S, Clevert DA and Obermayer K (2006) A new summarization method for Affymetrix probe level data. Bioinformatics 22: 943–949.

    Article  PubMed  CAS  Google Scholar 

  • Huang da W, Sherman BT and Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44–57.

    Article  CAS  Google Scholar 

  • Imhoff BR and Hansen JM (2010) Extracellular redox environments regulate adipocyte differentiation. Differentiation 80: 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264.

    Article  PubMed  Google Scholar 

  • Jell J, Merali S, Hensen ML, Mazurchuk R, Spernyak JA, Diegelman P, Kisiel ND, Barrero C, Deeb KK, Alhonen L, et al. (2007) Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J. Biol. Chem. 282: 8404–8413.

    Article  PubMed  CAS  Google Scholar 

  • Kim SS, Kim JR, Moon JK, Choi BH, Kim TH, Kim KS, Kim JJ and Lee CK (2009) Transcriptional alteration of p53 related processes as a key factor for skeletal muscle characteristics in Sus scrofa. Mol. Cells 28: 565–573.

    Article  PubMed  CAS  Google Scholar 

  • Liefoodghe A, Touzet H and Varre JS (2006) Large scale matching for Position Weight Matrices. Springer, pp. 401–412.

  • Lijnen HR (2008) Angiogenesis and obesity. Cardiovasc. Res. 78: 286–293.

    Article  PubMed  CAS  Google Scholar 

  • Littlefield R, Almenar-Queralt A and Fowler VM (2001) Actin dynamics at pointed ends regulates thin filament length in striated muscle. Nat. cell biol. 3: 544–551.

    Article  PubMed  CAS  Google Scholar 

  • Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, Ho MH, Baid J, et al. (2002) Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18: 1593–1599.

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Jayaraman S, Wang KS, Song Y, Yang B, Li J, Bastidas JA and Verkman AS (2001) Defective dietary fat processing in transgenic mice lacking aquaporin-1 water channels. Am. J. Physiol. Cell Physiol. 280: C126–134.

    PubMed  CAS  Google Scholar 

  • Mash DC, ffrench-Mullen J, Adi N, Qin Y, Buck A and Pablo J (2007) Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling. PLoS ONE 2: e1187.

    Article  PubMed  Google Scholar 

  • Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV et al. (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31: 374–378.

    Article  PubMed  CAS  Google Scholar 

  • McClain DA, Lubas WA, Cooksey RC, Hazel M, Parker GJ, Love DC and Hanover JA (2002) Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc. Natl. Acad. Sci. U S A 99: 10695–10699.

    Article  PubMed  CAS  Google Scholar 

  • Moon JK, Kim KS, Kim JJ, Choi BH, Cho BW, Kim TH and Lee CK (2009) Differentially expressed transcripts in adipose tissue between Korean native pig and Yorkshire breeds. Anim. Genet. 40: 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Muccioli GG, Naslain D, Backhed F, Reigstad CS, Lambert DM, Delzenne NM and Cani PD (2010) The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 6: 392.

    Article  PubMed  Google Scholar 

  • Nie J and Sage EH (2009) SPARC functions as an inhibitor of adipogenesis. J. Cell Commun. Signal. 3: 247–254.

    Article  PubMed  Google Scholar 

  • Nikitin A, Egorov S, Daraselia N and Mazo I (2003) Pathway studio—the analysis and navigation of molecular networks. Bioinformatics 19: 2155–2157.

    Article  PubMed  CAS  Google Scholar 

  • Park BY, Kim NK, Lee CS and Hwang IH (2007) Effect of fiber type on postmortem proteolysis in longissimus muscle of Landrace and Korean native black pigs. Meat Sci. 77: 482–491.

    Article  PubMed  CAS  Google Scholar 

  • Picard B, Lefaucheur L, Berri C and Duclos MJ (2002) Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 42: 415–431.

    Article  PubMed  Google Scholar 

  • Pineda Torra I, Jamshidi Y, Flavell DM, Fruchart JC and Staels B (2002) Characterization of the human PPAR {alpha} promoter: identification of a functional nuclear receptor response element. Mol. Endocrinol. 16: 1013.

    Article  PubMed  Google Scholar 

  • Previato L, Parrott C, Santamarina-Fojo S and Brewer H (1991) Transcriptional regulation of the human lipoprotein lipase gene in 3T3-L1 adipocytes. J. Biol. Chem. 266: 18958.

    PubMed  CAS  Google Scholar 

  • Puhakainen I and Yki-Jarvinen H (1993) Inhibition of lipolysis decreases lipid oxidation and gluconeogenesis from lactate but not fasting hyperglycemia or total hepatic glucose production in NIDDM. Diabetes 42: 1694–1699.

    Article  PubMed  CAS  Google Scholar 

  • Quilter CR, Gilbert CL, Oliver GL, Jafer O, Furlong RA, Blott SC, Wilson AE, Sargent CA, Mileham A and Affara NA (2008) Gene expression profiling in porcine maternal infanticide: a model for puerperal psychosis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B: 1126–1137.

    Article  PubMed  CAS  Google Scholar 

  • Rothschild MF (2003) From a sow’s ear to a silk purse: real progress in porcine genomics. Cytogenet. Genome Res. 102: 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Schulz LC and Widmaier EP (2007) Leptin receptors. Leptin 11-31.

  • Vodicka P, Smetana, K., Jr, Dvorankova, B., Emerick, T., Xu, Y.Z., Ourednik, J., Ourednik, V. and Motlik, J. (2005) The miniature pig as an animal model in biomedical research. Ann. NY Acad. Sci. 1049: 161–171.

    Article  PubMed  Google Scholar 

  • Wolkow CA, Mobbs C and Hof P (2010) New haystacks reveal new needles: using Caenorhabditis elegans to identify novel targets for ameliorating body composition changes during human aging. Body Composition and Aging 84.

  • Wu H, Zhao S, Liu B, Yu M, Zhu M, Li C and Fan B (2009) Tropomodulin 1 (TMOD1) is associated with lean meat growth and meat quality in the pig (Brief Report). Archiv. Tierzucht. 52: 108–110.

    CAS  Google Scholar 

  • Xu X, Xing S, Du Z and Rothschild M (2008) Porcine TEF1 and RTEF1: molecular characterization and association analyses with growth traits. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 150:447–453

    Article  Google Scholar 

  • Yasunami M, Suzuki K and Ohkubo H (1996) A Novel Family of TEA Domain-Containing Transcription Factors with Distinct Spatiotemporal Expression Patterns. Biochem. Biophys. Res. Commun. 228: 365–370.

    Article  PubMed  CAS  Google Scholar 

  • Zhao SH, Kuhar D, Lunney JK, Dawson H, Guidry C, Uthe JJ, Bearson SM, Recknor J, Nettleton D and Tuggle CK (2006) Gene expression profiling in Salmonella Choleraesuis-infected porcine lung using a long oligonucleotide microarray. Mamm. Genome 17: 777–789.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gul-Won Jang.

Additional information

D. Lim and K.-T. Lee contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, D., Lee, KT., Park, J.E. et al. Analysis of gene expression profiles from subcutaneous adipose tissue of two pig breeds. Genes Genom 33, 693–699 (2011). https://doi.org/10.1007/s13258-011-0083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-011-0083-4

Keywords

Navigation