Skip to main content
Log in

Models to Support Forest Inventory and Small Area Estimation Using Sparsely Sampled LiDAR: A Case Study Involving G-LiHT LiDAR in Tanana, Alaska

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

A two-stage hierarchical Bayesian model is developed and implemented to estimate forest biomass density and total given sparsely sampled LiDAR and georeferenced forest inventory plot measurements. The model is motivated by the United States Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis (FIA) objective to provide biomass estimates for the remote Tanana Inventory Unit (TIU) in interior Alaska. The proposed model yields stratum-level biomass estimates for arbitrarily sized areas. Model-based estimates are compared with the TIU FIA design-based post-stratified estimates. Model-based small area estimates (SAEs) for two experimental forests within the TIU are compared with each forest’s design-based estimates generated using a dense network of independent inventory plots. Model parameter estimates and biomass predictions are informed using FIA plot measurements, LiDAR data that are spatially aligned with a subset of the FIA plots, and complete coverage remotely detected data used to define landuse/landcover stratum and percent forest canopy cover. Results support a model-based approach to estimating forest parameters when inventory data are sparse or resources limit collection of enough data to achieve desired accuracy and precision using design-based methods. Supplementary materials accompanying this paper appear on-line

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen H-E, Barrett T, Winterberger K, Strunk J, Temesgen H (2009a) Estimating forest biomass on the western lowlands of the kenai peninsula of alaska using airborne lidar and field plot data in a model-assisted sampling design. IUFRO Div. 4 Symposium, Extending Forest Inventory and Monitoring

  • Andersen H-E, Clarkin T, Winterberger K, Strunk J (2009b) An accuracy assessment of positions obtained using survey- and recreational-grade global positioning system receivers across a range of forest conditions within the Tanana valley of interior Alaska. West J Appl For 24(3):128–136

    Article  Google Scholar 

  • Andersen H-E, Ståhlhl G, Finley AO, Cook BD (2024) Poststratified ratio estimators for model-assisted estimation in sample-based airborne surveys. Should be on Arxiv by proof stage

  • Andersen H-E, Strunk J, McGaughey RJ (2022) Using high-performance global navigation satellite system technology to improve forest inventory and analysis plot coordinates in the pacific region. Technical report

  • Babcock C, Finley AO, Andersen H-E, Pattison R, Cook BD, Morton DC, Alonzo M, Nelson R, Gregoire T, Ene L, Gobakken T, Næsset E (2018) Geostatistical estimation of forest biomass in interior Alaska combining Landsat-derived tree cover, sampled airborne lidar and field observations. Remote Sens Environ 212:212–230

    Article  ADS  Google Scholar 

  • Banerjee S (2017) High-dimensional Bayesian geostatistics. Bayesian Anal 12(2):583–614

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Banerjee S (2023) Finite population survey sampling: An unapologetic Bayesian perspective. To appear in Sankhya A. arXiv preprint arXiv 2101.03579

  • Banerjee S, Carlin BP, Gelfand AE (2014) Hierarchical modeling and analysis for spatial data. CRC Press, Boca Raton

    Book  Google Scholar 

  • Bechtold WA, Patterson PL (2005) The enhanced forest inventory and analysis program-national sampling design and estimation procedures. Gen. Tech. Rep. SRS-80. Asheville, NC: US Department of Agriculture, Forest Service, Southern Research Station. 85 p 80

  • Breidenbach J, Astrup R (2012) Small area estimation of forest attributes in the Norwegian National Forest Inventory. Eur J Forest Res 131(4):1255–1267

    Article  Google Scholar 

  • Breidt FJ, Opsomer JD (2017) Model-assisted survey estimation with modern prediction techniques. Stat Sci 32(2):190–205

    Article  MathSciNet  Google Scholar 

  • Burrill EA, DiTommaso AM, Turner JA, Pugh SA, Christensen G, Perry CJ, Conkling BL (2021) The forest inventory and analysis database: Database description and user guide for phase 2 (version 9.0)

  • Cahoon SM, Baer KC (2022) Forest resources of the Tanana unit, Alaska: 2018. Technical report

  • Chan-Golston A, Banerjee S, Belin TR, Roth SE, Prelip ML (2022) Bayesian finite-population inference with spatially correlated measurements. Japan J Stat Data Sci 5:407–430

    Article  MathSciNet  Google Scholar 

  • Chan-Golston AM, Banerjee S, Handcock MS (2020) Bayesian inference for finite populations under spatial process settings. Environmetrics 31(3):e2606

    Article  MathSciNet  Google Scholar 

  • Cook BD, Corp LA, Nelson RF, Middleton EM, Morton DC, McCorkel JT, Masek JG, Ranson KJ, Ly V, Montesano PM (2013) NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sensing 5(8):4045–4066

    Article  ADS  Google Scholar 

  • Coulston JW, Green PC, Radtke PJ, Prisley SP, Brooks EB, Thomas VA, Wynne RH, Burkhart HE (2021) Enhancing the precision of broad-scale forestland removals estimates with small area estimation techniques. For Int J For Res 94(3):427–441

    Google Scholar 

  • Datta A, Banerjee S, Finley AO, Gelfand AE (2016) Hierarchical nearest-neighbor gaussian process models for large geostatistical datasets. J Am Stat Assoc 111(514):800–812 (PMID: 29720777)

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekström M, Nilsson M (2021) A comparison of model-assisted estimators, with and without data-driven transformations of auxiliary variables, with application to forest inventory. Front For Global Change 4

  • Finley AO, Banerjee S, MacFarlane DW (2011) A hierarchical model for quantifying forest variables over large heterogeneous landscapes with uncertain forest areas. J Am Stat Assoc 106(493):31–48 (PMID: 26139950)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Finley AO, Datta A, Cook BD, Morton DC, Andersen HE, Banerjee S (2019) Efficient algorithms for Bayesian nearest neighbor Gaussian processes. J Comput Graph Stat 28(2):401–414

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Gelfand AE, Banerjee S (2010) Multivariate spatial process models. In: Gelfand A, Diggle P, Fuentes M, Guttorp P (eds) Handbook of spatial statistics. CRC Press, Boca Raton, pp 495–516

    Chapter  Google Scholar 

  • Gelman A, Hwang J, Vehtari A (2014) Understanding predictive information criteria for Bayesian models. Stat Comput 24(6):997–1016

    Article  MathSciNet  Google Scholar 

  • Ghosh M (2012) Finite population sampling: a model-design synthesis. Stat Transit New Series 13(2):235–242

    Article  Google Scholar 

  • Green E, Finley A, Strawderman W (2020) Introduction to Bayesian methods in ecology and natural resources. Springer International Publishing, Cham

    Book  Google Scholar 

  • Gregoire TG (1998) Design-based and model-based inference in survey sampling: appreciating the difference. Can J For Res 28(10):1429–1447

    Article  Google Scholar 

  • Gregoire TG, Ståhl G, Næsset E, Gobakken T, Nelson R, Nelson R, Holm S (2011) Model-assisted estimation of biomass in a lidar sample survey in Hedmark county, Norway. Can J For Res 41(1):83–95

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853

    Article  ADS  CAS  PubMed  Google Scholar 

  • Homer C, Dewitz J, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold N, Wickham J, Megown K (2015) Completion of the 2011 national land cover database for the conterminous United States: representing a decade of land cover change information. Photogramm Eng Remote Sens 81:346–354

    Google Scholar 

  • Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite universe. J Am Stat Assoc 47(260):663–685

    Article  MathSciNet  Google Scholar 

  • Hou Z, Domke GM, Russell MB, Coulston JW, Nelson MD, Xu Q, McRoberts RE (2021) Updating annual state-and county-level forest inventory estimates with data assimilation and FIA data. For Ecol Manage 483:118777

    Article  Google Scholar 

  • Köhl M, Magnussen S, Marchetti M (2006) Sampling methods, remote sensing and GIS multiresource forest inventory. Springer, Cham

    Book  Google Scholar 

  • Lister AJ, Andersen H, Frescino T, Gatziolis D, Healey S, Heath LS, Liknes GC, McRoberts RE, Moisen GG, Nelson M et al (2020) Use of remote sensing data to improve the efficiency of national forest inventories: a case study from the United States National Forest Inventory. Forests 11(12):1364

    Article  Google Scholar 

  • Little RJ (2004) To model or not to model? Competing modes of inference for finite population sampling. J Am Stat Assoc 99(466):546–556

    Article  MathSciNet  Google Scholar 

  • Magnussen S, Nord-Larsen T, Riis-Nielsen T (2018) Lidar supported estimators of wood volume and aboveground biomass from the Danish national forest inventory (2012–2016). Remote Sens Environ 211:146–153

    Article  ADS  Google Scholar 

  • Mateu J, Müller W (2012) Spatio-temporal Design: Advances in Efficient Data Acquisition. Statistics in Practice

  • May P, McConville KS, Moisen GG, Bruening J, Dubayah R (2023) A spatially varying model for small area estimates of biomass density across the contiguous united states. Remote Sens Environ 286:113420

    Article  Google Scholar 

  • May PB, Finley AO, Dubayah RO (2024) A spatial mixture model for spaceborne lidar observations over mixed forest and non-forest land types. J Agric Biol Environ Stat

  • McConville KS, Breidt FJ, Lee TCM, Moisen GG (2017) Model-assisted survey regression estimation with the Lasso. J Survey Stat Methodol 5(2):131–158

    Article  Google Scholar 

  • McGaughey RJ, Ahmed K, Andersen H-E, Reutebuch SE (2017) Effect of occupation time on the horizontal accuracy of a mapping-grade GNSS receiver under dense forest canopy. Photogramm Eng Remote Sens 83(12):861–868

    Article  Google Scholar 

  • McRoberts RE (2010) Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data. Remote Sens Environ 114(5):1017–1025

    Article  ADS  Google Scholar 

  • Peruzzi M, Banerjee S, Dunson DB, Finley AO (2021) Grid-parametrize-split (grips) for improved scalable inference in spatial big data analysis. arXiv preprint arXiv 2101.03579

  • Rao JN, Molina I (2015) Small area estimation. John Wiley & Sons, New York

    Book  Google Scholar 

  • Ren Q, Banerjee S (2013) Hierarchical factor models for large spatially misaligned data: a low-rank predictive process approach. Biometrics 69(1):19–30

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Saarela S, Holm S, Grafström A, Schnell S, Næsset E, Gregoire TG, Nelson RF, Ståhl G (2016) Hierarchical model-based inference for forest inventory utilizing three sources of information. Ann For Sci 73(4):895–910

    Article  Google Scholar 

  • Saarela S, Holm S, Healey SP, Andersen H-E, Petersson H, Prentius W, Patterson PL, Næsset E, Gregoire TG, Ståhl G (2018) Generalized hierarchical model-based estimation for aboveground biomass assessment using Gedi and Landsat data. Remote Sens 10(11)

  • Särndal C, Swensson B, Wretman J (2003) Model assisted survey sampling. Springer Series in Statistics. Springer, New York

    Google Scholar 

  • Särndal C-E, Thomsen I, Hoem JM, Lindley DV, Barndorff-Nielsen O, Dalenius T (1978) Design-based and model-based inference in survey sampling [with discussion and reply]. Scand J Stat 5(1):27–52

    Google Scholar 

  • Schroeder TA, Healey SP, Moisen GG, Frescino TS, Cohen WB, Huang C, Kennedy RE, Yang Z (2014) Improving estimates of forest disturbance by combining observations from Landsat time series with US Forest Service Forest Inventory and Analysis data. Remote Sens Environ 154:61–73

    Article  ADS  Google Scholar 

  • Shirota S, Finley AO, Cook BD, Banerjee S (2022) Conjugate sparse plus low rank models for efficient bayesian interpolation of large spatial data. Environmetrics, e2748

  • Smith WB (2002) Forest inventory and analysis: a national inventory and monitoring program. Environ Pollut 116:S233–S242

    Article  CAS  PubMed  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity and fit. J Roy Stat Soc B 64(4):583–639

    Article  MathSciNet  Google Scholar 

  • Ståhl G, Holm S, Gregoire TG, Gobakken T, Næsset E, Nelson R (2011a) Model-based inference for biomass estimation in a lidar sample survey in Hedmark county, Norwaythis article is one of a selection of papers from extending forest inventory and monitoring over space and time. Can J For Res 41(1):96–107

    Article  Google Scholar 

  • Ståhl G, Holm S, Gregoire TG, Gobakken T, Næsset E, Nelson R (2011b) Model-based inference for biomass estimation in a lidar sample survey in Hedmark county, Norwaythis article is one of a selection of papers from extending forest inventory and monitoring over space and time. Can J For Res 41(1):96–107

    Article  Google Scholar 

  • Ståhl G, Saarela S, Schnell S, Holm S, Breidenbach J, Healey SP, Patterson PL, Magnussen S, Næsset E, McRoberts RE, Gregoire TG (2016) Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation. For Ecosyst 3(1):5

    Article  Google Scholar 

  • Strunk J, Packalen P, Gould P, Gatziolis D, Maki C, Andersen H-E, McGaughey RJ (2019) Large area forest yield estimation with pushbroom digital aerial photogrammetry. Forests 10(5):397

    Article  Google Scholar 

  • Taylor-Rodriguez D, Finley AO, Datta A, Babcock C, Andersen H-E, Cook BD, Morton DC, Banerjee S (2019) Spatial factor models for high-dimensional and large spatial data: an application in forest variable mapping. Stat Sin 29(3):1155–1180

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Vehtari A, Gelman A, Gabry J (2017) Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat Comput 27(5):1413–1432

    Article  MathSciNet  Google Scholar 

  • Watanabe S (2010) Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J Mach Learn Res 11:3571–3594

    MathSciNet  Google Scholar 

  • Westfall JA, Patterson PL, Coulston JW (2011) Post-stratified estimation: within-strata and total sample size recommendations. Can J For Res 41(5):1130–1139

    Article  Google Scholar 

  • Wurtzebach Z, DeRose RJ, Bush RR, Goeking SA, Healey S, Menlove J, Pelz KA, Schultz C, Shaw JD, Witt C (2020) Supporting national forest system planning with forest inventory and analysis data. J Forest 118(3):289–306

    Article  Google Scholar 

  • Xia G, Miranda ML, Gelfand AE (2006) Approximately optimal spatial design approaches for environmental health data. Environmetrics 17(4):363–385

    Article  MathSciNet  Google Scholar 

  • Zhang L, Banerjee S (2022) Spatial factor modeling: a Bayesian matrix-normal approach for misaligned data. Biometrics 78(2):560–573

    Article  MathSciNet  PubMed  Google Scholar 

  • Zhang X (2016) An optimized blas library based on gotoblas2. https://github.com/xianyi/OpenBLAS/. Accessed 2015-06-01

Download references

Acknowledgements

Funding was provided by: Finley was supported by NASA Carbon Monitoring System (CMS) grants Hayes (CMS 2020) and Cook (CMS 2018); National Science Foundation (NSF) DMS-1916395; joint venture agreement with the USDA Forest Service Forest Inventory and Analysis 22-CA-11221638-201; USDA Forest Service, Region 9, Forest Health Protection, Northern Research Station; and Michigan State University AgBioResearch. Sudipto Banerjee was supported, in part, by National Science Foundation (NSF) under grants DMS-2113778, by the National Institute of Environmental Health Sciences (NIEHS) under grants R01ES030210 and 5R01ES027027 and by the National Institute of General Medical Sciences (NIGMS) under grant R01GM148761.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew O. Finley.

Ethics declarations

Conflicts of interest

There is no conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 275 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finley, A.O., Andersen, HE., Babcock, C. et al. Models to Support Forest Inventory and Small Area Estimation Using Sparsely Sampled LiDAR: A Case Study Involving G-LiHT LiDAR in Tanana, Alaska. JABES (2024). https://doi.org/10.1007/s13253-024-00611-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13253-024-00611-3

Navigation