Skip to main content

Advertisement

Log in

Computer-aided diagnosis system for classifying benign and malignant thyroid nodules in multi-stained FNAB cytological images

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

An automated computer-aided diagnosis system is developed to classify benign and malignant thyroid nodules using multi-stained fine needle aspiration biopsy (FNAB) cytological images. In the first phase, the image segmentation is performed to remove the background staining information and retain the appropriate foreground cell objects in cytological images using mathematical morphology and watershed transform segmentation methods. Subsequently, statistical features are extracted using two-level discrete wavelet transform (DWT) decomposition, gray level co-occurrence matrix (GLCM) and Gabor filter based methods. The classifiers k-nearest neighbor (k-NN), Elman neural network (ENN) and support vector machine (SVM) are tested for classifying benign and malignant thyroid nodules. The combination of watershed segmentation, GLCM features and k-NN classifier results a lowest diagnostic accuracy of 60 %. The highest diagnostic accuracy of 93.33 % is achieved by ENN classifier trained with the statistical features extracted by Gabor filter bank from the images segmented by morphology and watershed transform segmentation methods. It is also observed that SVM classifier results its highest diagnostic accuracy of 90 % for DWT and Gabor filter based features along with morphology and watershed transform segmentation methods. The experimental results suggest that the developed system with multi-stained thyroid FNAB images would be useful for identifying thyroid cancer irrespective of staining protocol used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Keleş A, Keleş A (2008) ESTDD: expert system for thyroid diseases diagnosis. Expert Syst Appl 34:242–246

    Article  Google Scholar 

  2. Tsantis S, Dimitropoulos N, Cavouras D, Nikiforidis G (2009) Morphological and wavelet features towards sonographic thyroid nodules evaluation. Comput Med Imaging Graph 33:91–99

    Article  PubMed  Google Scholar 

  3. Mundasad B, Mcallister I, Carson J, Pyper PC (2006) Accuracy of fine needle aspiration cytology in diagnosis of thyroid swellings. Internet J Endocrinol 2(2). doi:10.5580/484

  4. Karakitsos P, Cochand-Priollet B, Pouliakis A, Guillausseau PJ, Ioakim-Liossi A (1999) Learning vector quantizer in the investigation of thyroid lesions. Anal Quant Cytol Histol 21:201–208

    PubMed  CAS  Google Scholar 

  5. Würflinger T, Stockhausen J, Meyer-Ebrecht D, Böcking A (2003) Robust automatic coregistration, segmentation and classification of cell nuclei in multimodal cytopathological microscopic images. Comput Med Imaging Graph 28:87–98

    Article  Google Scholar 

  6. Lezoray O, Lecluse M (2007) Automatic segmentation and classification of cells from Bronchoalveolar lavage. Image Anal Stereol 26:111–119

    Article  Google Scholar 

  7. Shapiro NA, Poloz TL, Shkurupij VA, Tarkov MS, Poloz VV, Demin AV (2007) Application of artificial neural network for classification of thyroid follicular tumors. Anal Quant Cytol Histol 29:87–94

    PubMed  Google Scholar 

  8. Wang X, Li S, Liu H, Wood M, Chen WR, Zheng B (2008) Automated identification of analyzable metaphase chromosomes depicted on microscopic digital images. J Biomed Inform 41:264–271

    Article  PubMed  Google Scholar 

  9. Daskalakis A, Kostopoulos S, Spyridonos P, Glotsos D, Ravazoula P, Kardari M, Kalatzis I, Cavouras D, Nikiforidis G (2008) Design of a multi-classifier system for discriminating benign from malignant thyroid nodules using routinely H&E-stained cytological images. Comput Biol Med 38:196–203

    Article  PubMed  Google Scholar 

  10. Gopinath B, Gupta BR (2010) Classification of thyroid carcinoma in FNAB cytological microscopic images. Int J Healthc Inf Syst Inform 5:60–72

    Article  Google Scholar 

  11. Gopinath B, Gupta BR (2010) Majority voting based classification of thyroid carcinoma. Procedia Comput Sci 2:265–271

    Article  Google Scholar 

  12. Muthu Rama Krishnan M, Shah P, Chakraborty C, Ray AK (2012) Statistical analysis of textural features for improved classification of oral histopathological images. J Med Syst 36:865–881

    Article  PubMed  CAS  Google Scholar 

  13. Kelley DJ, Terris DJ, Talavera F, Kass E, Slack CL (2012) Thyroid, Papillary Carcinoma, Early. Medscape Reference. http://emedicine.medscape.com/article/849000. Accessed 31 January 2013

  14. http://www.papsociety.org/atlas.html

  15. Gopinath B, Shanthi N (2012) Automated segmentation of ELA cancer cells in microscopic images for evaluating the cytotoxic effect of selected medicinal plants. J Med Biol Eng 32:279–286

    Article  Google Scholar 

  16. Kimori Y (2011) Mathematical morphology-based approach to the enhancement of morphological features in medical images. J Clin Bioinforma 1:33

    Article  PubMed  Google Scholar 

  17. Hrebien M, Stec P, Nieczkowski T, Obuchowicz A (2008) Segmentation of breast cancer fine needle biopsy cytological images. Int J Appl Math Comput 18:159–170

    Google Scholar 

  18. Kimori Y, Baba N, Morone N (2010) Extended morphological processing: a practical method for automatic spot detection of biological markers from microscopic images. BMC Bioinformatics 11:373

    Article  PubMed  Google Scholar 

  19. Petushi S, Garcia FU, Haber MM, Katsinis C, Tozeren A (2006) Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med Imaging 6:14

    Article  PubMed  Google Scholar 

  20. Kavitha MS, Asano A, Taguchi A, Kurita T, Sanada M (2012) Diagnosis of osteoporosis from dental panoramic radiographs using the support vector machine method in a computer-aided system. BMC Med Imaging 12:1

    Article  PubMed  CAS  Google Scholar 

  21. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  22. Sadeghian F, Seman Z, Ramli AR, Kahar BHA, Saripan M (2009) A framework for white blood cell segmentation in microscopic blood images using digital image processing. Biol Proced Online 11:196–206

    Article  PubMed  CAS  Google Scholar 

  23. Julesz B, Gilbert EN, Shepp LA, Frisch HL (1973) Inability of humans to discriminate between visual textures that agree in second-order statistics revisited. Perception 2:391–405

    Article  PubMed  CAS  Google Scholar 

  24. Arivazhagan S, Ganesan L (2003) Texture classification using wavelet transform. Pattern Recogn Lett 24:1513–1521

    Article  Google Scholar 

  25. Abi-Abdallah D, Chauvet E, Bouchet-Fakri L, Bataillard A, Briguet A, Fokapu O (2006) Reference signal extraction from corrupted ECG using wavelet decomposition for MRI sequence triggering: application to small animals. Biomed Eng Online 5:11

    Article  PubMed  Google Scholar 

  26. Liu T, Zhang L, Li P, Lin H (2012) Remotely sensed image retrieval based on region-level semantic mining. EURASIP J Image Video Process 2012:4

    Article  Google Scholar 

  27. Zhang B, Pham TD (2011) Phenotype recognition with combined features and random subspace classifier ensemble. BMC Bioinformatics 12:128

    Article  PubMed  CAS  Google Scholar 

  28. Walkowski S, Szymas J (2011) Quality evaluation of virtual slides using methods based on comparing common image areas. Diagn Pathol 6:S14

    Article  PubMed  Google Scholar 

  29. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621

    Article  Google Scholar 

  30. Linder N, Konsti J, Turkki R, Rahtu E, Lundin M, Nordling S, Haglund C, Ahonen T, Pietikäinen M, Lundin J (2012) Identification of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagn Pathol 7:22

    Article  PubMed  Google Scholar 

  31. Bovik A, Clark M, Geisler WS (1990) Multichannel texture analysis using localized spatial filters. IEEE Trans Pattern Anal Mach Intell 12:55–73

    Article  Google Scholar 

  32. Hua J, Xiong Z, Lowey J, Suh E, Dougherty ER (2005) Optimal number of features as a function of sample size for various classification rules. Bioinformatics 21:1509–1515

    Article  PubMed  CAS  Google Scholar 

  33. Tahir MA, Bouridane A, Kurugollu F (2007) Simultaneous feature selection and feature weighting using hybrid Tabu search/K-nearest neighbor classifier. Pattern Recogn Lett 28:438–446

    Article  Google Scholar 

  34. Elman JL (1990) Finding structure in time. Cogn Sci 14:179–211

    Article  Google Scholar 

  35. Song Q (2010) On the weight convergence of Elman networks. IEEE Trans Neural Netw 21:463–480

    Article  PubMed  Google Scholar 

  36. Thammano A, Ruxpakawong P (2010) Nonlinear dynamic system identification using recurrent neural network with multi-segment piecewise-linear connection weight. Memetic Comp 2:273–282

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Gopinath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopinath, B., Shanthi, N. Computer-aided diagnosis system for classifying benign and malignant thyroid nodules in multi-stained FNAB cytological images. Australas Phys Eng Sci Med 36, 219–230 (2013). https://doi.org/10.1007/s13246-013-0199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-013-0199-8

Keywords

Navigation