Skip to main content
Log in

A 3D-Printed Externally Adjustable Symmetrically Extensible (EASE) Aortic Annuloplasty Ring for Root Repair and Aortic Valve Regurgitation

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

The valve-sparing aortic root replacement (VSARR) procedure was developed to preserve the aortic valve apparatus to replace aneurysmal aortic roots with synthetic grafts and to eliminate associated aortic regurgitation (AR). However, residual post-repair AR is not uncommon and has been found to be associated with recurrent AR and future reoperation.

Methods

We designed and manufactured a 3D-printed, external adjustable symmetrically extensible (EASE) aortic annuloplasty ring that can symmetrically reduce the aortic annulus diameter via a radial constriction, compliant mechanism. An ex vivo porcine VSARR model with annular dilation and AR was developed (n = 4) and used for hemodynamic, echocardiography, and high-speed videography data collection.

Results

After ring annuloplasty repair using the EASE aortic ring, the regurgitant fraction decreased from 23.6 ± 6.9% from the VSARR model to 7.4 ± 5.6% (p = 0.05), which was similar to that measured from baseline with a regurgitant fraction of 10.2 ± 3.9% (p = 0.34). The leaflet coaptation height after annuloplasty repair also significantly increased from that measured in VSARR model (0.4 ± 0.1 cm) to 0.9 ± 0.1 cm (p = 0.0004), a level similar to that measured in baseline (1.1 ± 0.1 cm, p = 0.28).

Conclusion

Using an ex vivo VSARR model, the EASE ring successfully reduced AR by reducing the annular diameter and improving leaflet coaptation. With its broad applicability and ease of use, this device has the potential to have a significant impact on patients suffering worldwide from AR due to root aneurysms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data related to this paper may be provided upon reasonable request.

References

  1. David T, Armstrong S, Manlhiot C, McCrindle B. Long-term results of aortic root repair using the reimplantation technique. J Thorac Cardiovasc Surg. 2013;145:S22-5.

    Article  PubMed  Google Scholar 

  2. David TE, Feindel CM. An aortic valve-sparing operation for patients with aortic incompetence and aneurysm of the ascending aorta. J Thorac Cardiovasc Surg. 1992;103:617–21.

    Article  CAS  PubMed  Google Scholar 

  3. Boodhwani M, de Kerchove L, Glineur D, Poncelet A, Rubay J, Astarci P, Verhelst R, Noirhomme P, El Khoury G. Repair-oriented classification of aortic insufficiency: impact on surgical techniques and clinical outcomes. J Thorac Cardiovasc Surg. 2009;137:286–94.

    Article  PubMed  Google Scholar 

  4. Benhassen LL, Ropcke DM, Sharghbin M, Lading T, Skov JK, Tjørnild MJ, Poulsen KB, Bechsgaard T, Skov SN, Nielsen SL, Hasenkam JM. Comparison of Dacron ring and suture annuloplasty for aortic valve repair-a porcine study. Ann Cardiothorac Surg. 2019;8:342–50.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stephens EH, Liang DH, Kvitting JP, Kari FA, Fischbein MP, Mitchell RS, Miller DC. Incidence and progression of mild aortic regurgitation after Tirone David reimplantation valve-sparing aortic root replacement. J Thorac Cardiovasc Surg. 2014;147:169–77.

    Article  PubMed  Google Scholar 

  6. Oka T, Okita Y, Matsumori M, Okada K, Minami H, Munakata H, Inoue T, Tanaka A, Sakamoto T, Omura A, Nomura T. Aortic regurgitation after valve-sparing aortic root replacement: modes of failure. Ann Thorac Surg. 2011;92:1639–44.

    Article  PubMed  Google Scholar 

  7. Zhu Y, Cohen JE, Ma M, Woo YJ. Redo valve-sparing root replacement for delayed cusp derangement from ventricular septal defect. Ann Thorac Surg. 2019;108:e295-6.

    Article  Google Scholar 

  8. David TE, Feindel CM, Webb GD, Colman JM, Armstrong S, Maganti M. Long-term results of aortic valve-sparing operations for aortic root aneurysm. J Thorac Cardiovasc Surg. 2006;132:347–54.

    Article  PubMed  Google Scholar 

  9. Karciauskas D, Mizariene V, Jakuska P, Ereminiene E, Vaskelyte JJ, Nedzelskiene I, Kinduris S, Benetis R. Long-term outcomes and predictors of recurrent aortic regurgitation after aortic valve-sparing and reconstructive cusp surgery: a single centre experience. J Cardiothorac Surg. 2019;14:194.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kari FA, Doll KN, Hemmer W, Liebrich M, Sievers HH, Richardt D, Reichenspurner H, Detter C, Siepe M, Czerny M, Beyersdorf F. Residual and progressive aortic regurgitation after valve-sparing root replacement: a propensity-matched multi-institutional analysis in 764 patients. Ann Thorac Surg. 2016;101:1500–6.

    Article  PubMed  Google Scholar 

  11. Patlolla SH, Saran N, Dearani JA, Stulak JM, Schaff HV, Greason KL, Daly RC, King KS, Pochettino AB. Outcomes and risk factors of late failure of valve-sparing aortic root replacement. J Thorac Cardiovasc Surg. 2020;S0022–5223(20)32668–4.

  12. Cabrol C, Cabrol A, Guiraudon G, Bertrand M. Le traitement de l’insuffisance aortique par l’annuloplastie aortique [treatment of aortic insufficiency by means of aortic annuloplasty]. Arch Mal Coeur Vaiss. 1966;59:1305–12.

    CAS  PubMed  Google Scholar 

  13. Zhu Y, Woo YJ. Cusp repair techniques in bicuspid and tricuspid aortic valves. JTCVS Tech. 2021;7:109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schneider U, Aicher D, Miura Y, Schäfers HJ. Suture annuloplasty in aortic valve repair. Ann Thorac Surg. 2016;101:783–5.

    Article  PubMed  Google Scholar 

  15. Lansac E, Di Centa I, Sleilaty G, Lejeune S, Berrebi A, Zacek P, Debauchez M. Remodeling root repair with an external aortic ring annuloplasty. J Thorac Cardiovasc Surg. 2017;153:1033–42.

    Article  PubMed  Google Scholar 

  16. Schöllhorn J, Rylski B, Beyersdorf F. Aortic valve annuloplasty: new single suture technique. Ann Thorac Surg. 2014;97:2211–3.

    Article  PubMed  Google Scholar 

  17. Gocoł R, Jasiński M, Hudziak D, Bis J, Żak A, Duraj P, Mizia M, Rankin JS, Deja MA. Surgical correction of aortic regurgitation using a HAART 300™ rigid aortic ring: a novel method to standardize aortic valve repair. Cardiol J. 2019;26:799–801.

    Article  PubMed  Google Scholar 

  18. Crexells C, Aerichide N, Bonny Y, Lepage G, Campeau L. Factors influencing hemolysis in valve prosthesis. Am Heart J. 1972;84:161–70.

    Article  CAS  PubMed  Google Scholar 

  19. Ismeno G, Renzulli A, Carozza A, De Feo M, Iannuzzi M, Sante P, Cotrufo M. Intravascular hemolysis after mitral and aortic valve replacement with different types of mechanical prostheses. Int J Cardiol. 1999;69:179–83.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu Y, Imbrie-Moore AM, Paulsen MJ, Priromprintr B, Park MH, Wang H, Lucian HJ, Farry JM, Woo YJ. A novel aortic regurgitation model from cusp prolapse with hemodynamic validation using an ex vivo left heart simulator. J Cardiovasc Transl Res. 2021;14:283–9.

    Article  PubMed  Google Scholar 

  21. Zhu Y, Imbrie-Moore AM, Park MH, Paulsen MJ, Wang H, MacArthur JW, Woo YJ. Ex vivo analysis of a porcine bicuspid aortic valve and aneurysm disease model. Ann Thorac Surg. 2021;111:e113-5.

    Article  Google Scholar 

  22. Zhu Y, Imbrie-Moore AM, Paulsen MJ, Priromprintr B, Wang H, Lucian HJ, Farry JM, Woo YJ. Novel bicuspid aortic valve model with aortic regurgitation for hemodynamic status analysis using an ex vivo simulator. J Thorac Cardiovasc Surg. 2022;163:e161-71.

    Article  Google Scholar 

  23. Zhu Y, Marin-Cuartas M, Park MH, Imbrie-Moore AM, Wilkerson RJ, Madira S, Mullis DM, Woo YJ. Ex vivo biomechanical analysis of the Ross procedure using the modified inclusion technique in a 3-dimensionally printed left heart simulator. J Thorac Cardiovasc Surg. 2021;S0022–5223(21)01315–5.

  24. Paulsen MJ, Imbrie-Moore AM, Baiocchi M, Wang H, Hironaka CE, Lucian HJ, Farry JM, Thakore AD, Zhu Y, Ma M, MacArthur JW Jr, Woo YJ. Comprehensive ex vivo comparison of 5 clinically used conduit configurations for valve-sparing aortic root replacement using a 3-dimensional-printed heart Simulator. Circulation. 2020;142:1361–73.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bailey CP, Zimmerman J. The surgical correction of aortic regurgitation. Bicuspid conversion. Am J Cardiol. 1959;3:6–21.

    Article  CAS  PubMed  Google Scholar 

  26. Duran CG. Reconstructive techniques for rheumatic aortic valve disease. J Card Surg. 1988;3:23–8.

    Article  CAS  PubMed  Google Scholar 

  27. Aicher D, Schneider U, Schmied W, Kunihara T, Tochii M, Schäfers HJ. Early results with annular support in reconstruction of the bicuspid aortic valve. J Thorac Cardiovasc Surg. 2013;145:S30-4.

    Article  PubMed  Google Scholar 

  28. Rankin JS, Gaca JG. Techniques of aortic valve repair. Innovations (Phila). 2011;6:348–54.

    Article  PubMed  Google Scholar 

  29. Izumoto H, Kawazoe K, Kawase T, Kim H. Subvalvular circular annuloplasty as a component of aortic valve repair. J Heart Valve Dis. 2002;11:383–5.

    PubMed  Google Scholar 

  30. Charitos EI, Stierle U, Sievers HH, Misfeld M. Valve-sparing aortic root remodeling with partial preservation of the intact native aortic sinuses. Eur J Cardiothorac Surg. 2009;36:589–91.

    Article  PubMed  Google Scholar 

  31. Komiya T. Aortic valve repair update. Gen Thorac Cardiovasc Surg. 2015;63:309–19.

    Article  PubMed  Google Scholar 

  32. Frater RW. Aortic valve insufficiency due to aortic dilatation: correction by sinus rim adjustment. Circulation. 1986;74:I136-42.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Ian Ritchie for making a generous donation that supported this research effort.

Funding

This work was supported by the National Institutes of Health (NIH R01 HL 152155, YJW; F32 HL158151, YZ) and the Thoracic Surgery Foundation Resident Research Fellowship (YZ). The manuscript contents are solely the responsibility of the authors and do not necessarily represent the official views of the funders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Joseph Woo.

Ethics declarations

Competing Interests

Authors YZ, MHP, and YJW declare that a planned patent submission of the EASE aortic ring is being prepared. Authors RJW, HJ, and PKP declare that they have no conflict of interest.

Additional information

Communicated by Zhenglun Alan Wei.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Park, M.H., Wilkerson, R.J. et al. A 3D-Printed Externally Adjustable Symmetrically Extensible (EASE) Aortic Annuloplasty Ring for Root Repair and Aortic Valve Regurgitation. Cardiovasc Eng Tech (2024). https://doi.org/10.1007/s13239-024-00709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13239-024-00709-2

Keywords

Navigation